An Architecture for
Interprocess Communication in UNIX*

— DRAFT of June 22, 1981 —

William Joy and Robert Fabry

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

(415) 642-7780

ABSTRACT

This proposal describes a set of extensions to UNIX integrating
interprocess communication mechanisms (IPC) for use in an
networked environment. The proposed extensions provide virtual
circuits and datagrams, both of which-admit simple and efficient
implementations. To support multiplexing of communications in a
single process both a synchronous facility similar to the ADA select
statement and an asynchronous software-interrupt (signal) based
facility are proposed.

The IPC facilities are integrated into the current UNIX name
space by portals, entries in the file system that invoke server
processes when accessed. Portals are usad to build services acces-
sible in the standard UNIX name space. We describe how the basic
IPC facilities and portals may be used to provide services on a sin-
gle machine and in a internetwork environment.

* UNIX is & trademark of Bell Laboratories.

IPC architecture -i- Contents

TABLE OF CONTENTS

1. Introduction

2. IPC design issues
.1. Layered Approach
.1.1. Internetwork interface
.1.2. Kernel IPC services
.1.3. Data representation and abstract types
.1.4. Applications support
.2. Protection
.3. Systems with similar goals
.4. Goals and non-goals for the design

8. IPC primitives
.1. Addressing
.2. Sockets
.3. Datagram facilities
.3.1. Creating datagram sockets
.3.2. Sending/receiving datagrams
.3.3. Properties of datagrams
.3.4. Discarding datagram sockets
.4. Circuit facilities
.4.1. Creating circuit sockets
.4.2. Answering calis
.4.3. Placing calls
.4.4. Input and output on circuits
4.4.1. Reading and writing in stream mode
.4.4.2. Record mode
.4.4.3. Urgent data
.4.5. Failure of circuits
.4.6. Circuits simulating pipes
.4.7. Closing sockets and circuits
.5. Multiplexing communication
.5.1. Synchronous processing
.5.2. Non-blocking operations
.5.3. Asynchronous processing
.8. Socket status and options
7. loctl, control and option setting
.8. Examples

4. Applications facilities
.1. Creating servers in UNIX name space: portals
.1.1. Creating portals
.1.2. Portal server establishment
.2. UNIX service protocols
.2.1. PORTAL_VC protocol
.2.2. PORTAL_FILE protocol
.2.3. PORTAL_DEV protocol
.2.4. PORTAL_DIR protocol
.3. Creating serversin internetwork address space: associations
.4. Examples

CSRG TR/3 - Draft of June 22, 1981 — Joy/Fabry

IPC architecture -il-

TABLE OF CONTENTS

$. Comparisons
Current UNIX facilities
Pipes
Multiplexed files
Signals
Ptrace
Other communications primitives
1. Reliably delivered messages
2. X.25 fast select message exchange
.2.3. Broadcasting and multiplexing
.2.4. Remote procedure calls
.3. Other styles of IPC
.3.1. Link-based IPC
3.2, Authentication in multiple protection domains
.3.3. CMU ports
.4. Tightly coupled systems
.4.1. Cocanet

A S

1
1
1
1

.1

.2
2
2
2
2

.4.2. Locus

.4.3. Trix

.4.4. Livermore NOS
.4.5. Accent

.5. Loosely couplable facilities and systems
.5.1. BBN UNIX TCP/IP

.5.2. Pilot

.5.3. Purdue ECN UNKX

6. Implementation

Sockets

Datagrams

Virtua! circuits

Select statement

Asynchronous and non-blocking i/0

Portals

Associations

Network interfacing

Performance of a prototype implementation

coNpUP bR

7. Conclusions
References
Acknowledgements

A Appendix Layered models
.1. Arpanet protocols: the IP family
.2. Xerox pup architecture
.3. 1S0 open systems model
.4. Network Operating System Model

CSRG TR/3. — Draft of June 22, 1981 —

Contents

Joy/Fabry

IPC architecture -1- Introduction

1. Introduction

This is a proposal for enhancement of UNIX to provide inter-process com-
munications facilities for a network environment.

An examination of the reasons for the widespread use and popularity of
UNIX should provide a good point of departure for designing new system facili-
ties. There is strong evidence that the clean and simple interfaces of UNIX are
the reason for its success. The command invocation interface, the file system,
and the pipe mechanism all have straightforward semantics, admit simple and
eflicient implementations, and are easy to use. They allow UNIX programmers to
access programs, flles and to build new applications by composing the actions of
existing programs, often without writing any new programs. The functional style
of program building and the existence of many single-function tools contributes
greatly to UNIX's accessibility [Kernighan 81]. Related research in program-
ming environments attempts to apply a similar tool-kit approach [Osterweil 81).

We are not attempting to design a monolithic 1PC facility that will provide
everything needed by UNIX users. We believe that this is neither desirable nor
possible. Instead, we are interested in constructing IPC mechanisms that will be
simple to use, admit efficient implementations, and allow higher level mechan-
isms for communications to be constructed. The UNIX kernel functions largely
as an input/output multiplexor [Thompson 76). and we believe that this is also a
proper role for a IPC kernel for UNIX.

We have several specific applications in mind for the IPC facilities. There
are many programs running on a single UNIX system that need better IPC facili-
ties and the handling of multiple i/o activities provided by the IPC design. The
ability to access to both local and distant networks is also important. To the
extent possible, we wish to mask the differences between the datagram and vir-
tual circuit facilities of the various networks so that network portable programs
can be written. Remote file access, remote login and communication between
parts of distributed user applications need to be supported on all networks.

We also intend to use the 1PC facilities to build both a distributed UNIX sys-
tem of autonomous personal machines and a tightly coupled central computing
facility providing a distributed file system and load-sharing. Tightly-coupled dis-
tributed UNIX systems have been or are being constructed by a several groups
working with UNIX [Hwang Bla] [Popek 81] [Rowe 81], and the IPC design
presented here can be used to construct such systems. Loose coupling of per-
sonal computers will be important in our environment where a large number of
machines are under local control. Providing sharing of resources while retaining
autonomy is a problem addressable within our design and one worthy of further
study [Clark 80].

This paper has 7 sections. Section 2 outlines issues in distributed systems
and develops a set of goals and non-goals for our IPC design. Section 3 describes
the IPC primitives for internetwork communication in UNIX in great detail. Sec-
tion 4 discusses the interaction of the IPC primitives with existing UNIX facilities
to allow servers and other facilities to exist in the UNIX name space. Section 5
compares the IPC design presented in sections 3 and 4 to other work. Section 6
outlines how the IPC mechanisms can be implemented and reports on the
efficiency of a prototype implementation. Section 7 summarizes the paper and
notes areas for further investigation. An appendix describes the layered models
of internetworks and internetwork systems that are a basis for this work and
with which it can be compared.

CSRG TR/3 - Draft of June 22, 1981 — Joy/Fabry

IPC architecture -2- Design issues

2. IPC design issues

We see at least four distinct areas where UNIX IPC will be important:

* In the support of single machine applications involving simple data transfer
between unrelated processes. Efficiency of the intra-machine IPC mechan-
isms is critical in this case.

* In accessing communications facilities of the network and internetwork
architectures, for communication between processes on different proces-
sors. Efficient translation from the IPC facilities to the network facilities
and the ability to communicate with non-UNIX systems are especially
important here.

* In constructing services on a tightly coupled set of machines to build a net-
work operating system [Kimbleton 76] [Watson B0a]. Naming, protection,
synchronization, resource management and performance issues are impor-
tant for such systems.

* In retaining the autonomy of individual machines while allowing coherent
access to distributed resources. Some researchers believe that this is the
major research issue in distributed computing [Svobodova 78] [Clark 80].
Providing uniform and coherent access to distributed objects while meeting
local needs is a difficult issue.

In achieving these goals we wish to provide facilities that complement the
current UNIX facilities in style, and appear integrated as a total system. The
extent to which we have achieved this goal in our design can be judged only sub-
jectively, but we have tried to be conscious of this goal and hope we have
designed culturally compatible extensions to UNIX.

2.1. Layered approach

To approach the many issues raised by these requirements, distributed sys-
tem and network design is based on layered systems and protocols. Important
examples include the Arpanet protocol family based on the Internet Protocols
[Cerf 74] [Lyons 80] [Postel 80b) [Postel 80c], the Pup Internetwork architecture
[Boggs 79] as supported by the Pilot operating system [Redell 79], the 1SO model
of Open Systems Interconnection (1S0 79] [Zimmerman 80] which incorporates
the X.25 protocol [Rybczynski 80] [Folts 80], and models for_network operating
systems such as that of [Watson Bla] given in [Lampson Bla]. Readers unfami-
liar with these models should refer to Appendix A.

We first present considerations at the lower levels of the models and then
proceed to higher level considerations. We begin by presenting our assumptions
about the internetwork environment. Successive sections consider facilities
desirable in the kernel interface to the internet, data type and representation
conversion issues, and the provision of services easily accessible from UNIKX pro-
grams. :

2.1.1. Internetwork interface

A system that wishes to provide an efficient and reliable interface to several
networks must abstract common facilities and features of those networks into a
consistent mode! for network communication. We believe the following abstract
network features are critical and non-controversial, and likely to be constructi-
ble from the concrete facilities available in most networks and internetworks:

CSRG TR/3 — Draft of Jyne 22, 1881 — Joy/Fabry

IPC architecture -3- Design issues

¢ Datagram as well as virtual circuit access must be provided in the internet-
work. These are a minimal set for the construction of other higher level
protocols. Arguments that suggest that only circuit access should be pro-
vided to public networks are largely political [Pouzin 76).

* A universal internetwork address space should be available, and no a priori
restrictions should be made on intercommunications in this space. The
exact form of the internetwork address space is not critical to us, so long as
entities that wish to communicate in the internetwork are able to obtain
distinct addresses.

s All messages should contain origin and destination addresses.
We will assume these features in the design of our facilities.

It is anticipated that more than one form of address will be applicable to
the internetwork environment. Generic resource addresses and location-
independent names are particularly useful. We expect that internetwork
resources will be accessed by resource identifiers and translated by network
servers to addresses in a location independent way. These higher-level
addresses are supported at a level above the bare internetwork addresses,
erhaps as part of capabilities used to access the remote resources. See
McQuillan 78}, {Shoch 78a] and [Saltzer 78] for more discussion of such issues;
specific considerations for naming designs are given in [Abraham 80],
[Powell 81), [Voydock 80] and [Watson B1b].

2 1.2. Kernel IPC services

It is crucial that the operating system kernel 1PC services should
correspond closely to the internetwork 1PC facilities. There should be datagram
and circuit facilities in the 1PC kernel. To the extent technologically possible,
both datagrams and circuits should be supported over the entire internetwork
address space. Within the context of the local system, provisions should be
made for using datagrams and virtual circuits without invoking the network
transport layer to increase efliciency.

To support construction of servers that multiplex activities we believe that
there must be a way for a server to select i/o channels in need of activity from a
specified set of channels. Support for the style of selection provided in ADA [leh-
biah 79] seems natural here, and is a generalization of the await mechanism of
[Haverty 78], providing a timeout, and specifying the interesting set of i/o chan-
nels at each call instead of having the active set as part of @ more global, per-
process state.

There will certainly exist some Servers that need to service some i/o chan-
nels with low latency. To allow such servers to be written in a natural way
without polling, we believe that an interrupt-driven style of i/o access should be
provided, where software interrupts are presented to the server when events
occur on specified channels.

2.1-3. Data representation and abstract types

The transmission of typed data in message communication is a critical
feature that must be provided to application programs [White 78] [Sproull 78]
[Liskov 78] [Feldman 79]. We recognize the value that would accrue if a useful
standard external data representation were in common use, but believe that
many applications that will need representation transformation are likely to find
that pre-defined system transformations are inadequate and incomplete. Com-
plex mechanisms are required to handle the transportation of structures for
which internal type representations differ from the external representation in

CSRG TR/3 — Draft of June 22, 1881 — Joy/Fabry

IPC architecture -4- Design issues

which messages are communicated. The general case where self-referential
structures are to be transmitted or relationships between objects in separate
messages are to be preserved is deeply involved with the semantics desired by
the application language [Herlihy 80] [Nelson 80].

We agree with [Voydock 80] that work in this area is in its infancy, and this
suggests that such mechanisms should not yet be made a part of the base IPC
design (as in [Rashid 80]), but layered in at a level outside the 1PC kernel, as in
the 1SO model where they are part of the Presentation layer [1SO 79} [Zimmer-
man 80]. Under our proposal, the data type interpretation and transmission will
be the function of the language libraries provided by the applications packages,
and involve use of language-specific storage management facilities and global
state normally unavailable to the kernel. This approach is conservative, flexible
and acceptably efficient.

2.1.4. Applications support

To make IPC available to UNIX applications in a natural way, the IPC facili-
ties must be made part of the UNIX name space, supported by the UNIX file sys-
tem naming conventions. Such facilities are part of most distributed UNIX sys-
tems proposed or implemented [Chesson 79] [Rowe 81] [Ward B0]. We believe
that the system should:

* Make it possible to provide the different types of facilities available in
current UNIX files using server processes.

* Allow server processes to be created on request instead of than requiring
them to exist before they are needed.

* Enable applications programs to rendezvous using the UNIX file system as a
simple name server.

We propose to meet these needs by providing a mechanism for a server pro-
cess to place hooks in the UNKX file system name space that provide access to
server processes. The portal mechanism that allows these service processes to
be accessed is described in section 4.

2.2. Protection

Providing protection for applications operating in a distributed environ-
ment is more difficult than in a single machine. In the context of a single
machine or a set of machines under a single administrative authority the con-
trol of access can be dealt with within the UNIX kernels, protecting files and
access to communications using the UNIX protection mechanism.

In a rich internetwork environment resource sharing will be desirable
across administrative domains, and protection mechanisms cannot (and should
not) be provided for totally in the kernel. Mechanisms for control of access in
such environments involve the use of encryption [Kent 76] [Needham 78]
[Popek 79]. Encrypting conventional cepabilities can be used to control access

Chaum 78] [Needham 79)]. A standard encrypted form including address, rights

and authentication bits is believed to be valuable in implementing such an
environment [Watson 80a].

Our basic IPC mechanisms provide UNIX protection within the context of a
single machire but no a priori protection in the internetwork. We expect to
experiment with several internetwork protection facilities within the framework
of our IPC mechanisms.

CSRG TR/3 -- Draft of June 22, 1881 — Joy/Fabry

IPC architecture -5- Design issues

2.3. Systems with similar goals

At the internetwork and system facilities level, our design choices closely
agree with the facilities provided by the Pilot operating system operating in the
Xerox Pup environment Redell 79]. The applications facilities attempt to allow

construction of facilities such as those provided by Cocanet [Rowe 81).

We desire universal addresses for communicating entities. Pup provides
such addresses to Pilot. At the IPC facilities level, we believe that the system
should provide both a datagram and a stream interface. Pup and higher level
protocols (such as NetworkStream) do this in Pilot.

The proposed facilities for UNIX and the facilities of Pilot differ in the way in
which input/output multiplexing takes place. Pilot provides for several Mesa
processes within a single address space. Individual tasks in this address space
can block in the process of sending and receiving messages and Pilot will con-
tinue with other active tasks. Mesa monitors provide synchronization for
processes in a single Pilot process [Lampson 80].

In UNIX multiple independent processes are available for concurrent pro-
gramming activities. Only a single logica! thread of control is provided by the
system for each process context. If multiple simultaneous input/output activi-
ties are to be permitted to a single process it is necessary to provide the user
with non-blocking primitives or a mechanism for determining whether a given
system call will block.

A fundamental mechanism proposed for the Pilot environment is the use of
remote procedure calls to access remote resources. Such facilities have been
implemented in RIG [Ball 78] [Lantz 80]. If similar facilities were to be provided
in UNIX we would place much of the relevant code in the language libraries (at
the Presentation level of the 1SO model), since much of this processing is con-
cerned with transmission and reception of language-specific information.

At the application level, the Pilot system provides Mesa interfaces, while the
UNIX system provides inter-process interfaces pbased on the UNIX i/o system.
Closer comparisons of our proposed facilities can be made to the applications
facilities of Cocanet [Rowe 81), Datakit [Chesson 79), Locus [Popek 81] or Trix
[Ward 80].

Cocanet, in particular, provides both remote file access and 1PC facilities,
providing users with datagram, unicast (circuit) and multicast messages. The
datagram facilities are accessed using names in the directory **/dgram'’’; similar
directories exist for unicast messages (virtual circuits) and multicast messages
(which send data reliably to multiple recipients). These directories allow access
to name servers providing special protocols for message sending. Similar spe-
cial naming directories provide access to remote file systems.

We allow such name extensions to the system to be constructed by applica-
tions programs using the portal facility described in section 4. Special portals
supported by kernel or user processes can be used to provide IPC facilities simi-
lar to those provided by Cocanet.

2 4. Goals and non-goals for the design

We can now state a set of goals and a set of non-goals to guide our 1PC
design. Goals are to:

+ Provide simple and efficient inter-process communication on a single pro-
cessor. The IPC primitives should be implementable on different machines
in a small communications oriented module in the kernel.

CSRG TR/3 - Draft of June 22, 1981 — Joy/Fabry

IPC architecture -6- Design issues

+ Provide IPC primitives that will interact well with facilities available in
current networks and on other systems.

+ Provide facilities for extending the single-machine UNIX programming
environment to include services written using IPC facilities. In particular, it
should be possible for existing naive programs to make use of new server-
provided facilities without being aware that servers are involved.

We are specifically not attempting to provide a single approach for:
— The naming and accessing of servicesin a internetwork environment.

— The control over information access and protection of communication in
the internetwork environment.

— The transmission of structured information between processes.

We believe that there are a several interesting approaches to these latter prob-
lems that merit further investigation. These approaches can be investigated
within the context of our IPC facilities.

CSRG TR/3 -- Draft of June 22, 1981 - Joy/Fabry

IPC architecture -7- IPC primitives

8. IPC primitives

We describe the internetwork facilities: addressing, sockets, datagrams and
circuits, and the facilities for multiplexing i/o.

3.1. Addressing

We assume that the transport layer of the system provides us with an inter-
network wide address space. Each message to be sent on the internetwork
includes source and destination addresses. In the sequel we refer to a type
in_addr which represents a universal internetwork address.

The internal form of a network address is not important to most applica-
tions. A few addresses will be widely known, but most will be obtained from
servers. It is, of course, critical that the addresses be translatable to the forms
required by the various networks. Networks based on X.25, PUP and the IP pro-
tocols use different internal formats for the addresses. It is necessary that the
single representation used by UNIX be mappable to and from these different for-
mats.

For definiteness the reader may assume that an address is in an internet-
work format:

typedef struct in_addr §

int ipaddr; /* internet address */
int moreprecise; /* sub-addressing at destination */
{ in_addr;
3.2. Sockets

Our implementation makes use of a socket concept for both the datagram
and circuit abstractions. Sockets are the destination of all internetwork com-
munication. If a socket is not active when communications is attempted to it
the information may be discarded, or a server may be created and presented
with the open socket.

The types of sockets available are represented by the type in_proto:
enum in_proto § SOCK_DG, SOCK_CALL, SOCK_VC {;

Each socket has some amount of buffering associated with it; the different
socket types buffer different objects. SOCK_DG datagram sockets have a fifo
queue for datagrams. SOCK_CALL call director sockets have a queue for incom-
ing and outgoing calls. SOCK_VC virtual circuit sockets have a queue for incom-
ing data and logically reference a matching SOCK_VC socket where transmitted
data is stored.

Active sockets in a process are referenced by small integer descriptors
drawn from the same pool as UNIX file descriptors. Processes that wish to multi-
plex their communications activities often wish to choose from among a set of
active sockets the ones that are ready for service. To specify such a set the
type in_sockets is introduced. A variable of type in_sockets takes on values
which are bit masks representing sets. On the VAX the in_sockets type could be
defined by:

CSRG TR/3 ~ Draft of June 22, 1981 — Joy/Fabry

IPC architecture -8- IPC primitives

#define NBBY 8 /* number of bits per byte */
j#define IN_SOCKETS 20

typedef struct in_sockets |
char Dbits[(INSOCKETS+NBBY-1)/NBBY]:
{ in_sockets;

Here IN_SOCKETS is the count of sockets representable in type in_sockets, and is
currently limited by the limit on per-process descriptors to 20. We expect to
increase this limit before the first release of the IPC facilities and have con-
structed the IPC facilities to allow the limit to be easily changed from program
to program or system to system.

The C library will provide a set of standard operations on the socket-set
represented in an object of type in_sockets. The zerosocket routine removes all
elements from the set of sockets in an argument socket-set. The operation set-
socket adds a socket index to the socket-set. The getsocket routine picks a
socket from the argument socket-set and returns it as a small integer, also per-
forming a clrsocket operation to remove this socket index from the socket-set.
The implementation of these operations is trivial and they will not be defined
here.

8.3. Datagram facilities

A datagram is a short piece of data sent to a specific address. The system
does not guarantee delivery of datagrams. Datagrams may have a limit on max-
imum length imposed by the medium over which they are communicated. Par-
ticular networks may attempt to return datagrams in a network-specific format
when datagram delivery fails.

8.3.1. Creating datagram sockets

To send a datagram both a source and a destination address are required,
so that the recipient of a datagram can receive the address of the sender. This
corresponds to the format of datagrams supplied by the common networks. To
create a datagram socket one issues a socket call:

int s; /* socket descriptor */
in_addr addr; /* assigned address */
in_addr pref; /* preferred address */

s = socket(SOCK_DG, &addr, &pref);

Socket calls return a UNIX ‘‘file descriptor” in s, and the internetwork address
of the socket in addr. A preferred address for a socket call may be specified by
pref, to be used in setting up well-known sockets. If the pref argument is 0, then
the system chooses an address for the socket. If pref is specified, but unavail-
able (e.g. in use, not permissible on this machine, or forbidden for use by the
current user) then an error is returned.

As with other UNIX system calls, an error may be returned by socket indi-
cating that there are no more sockets available, or that the preferred socket is
not available. The C interface provides a return value of —1 in these cases, and
the external variable errno will be set to a characteristic error. The interface to
other languages may generate exceptions in these cases.

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

IPC architecture -9- IPC primitives

3.3.2. Sending/receiving datagrams
To send a datagram from a socket a send primitive is provided. Thus:
int s;
in_addr dest;
char *msg; int len;

... initialize values of s, dest, ident ...
send(s, &dest, msg, len);

sends len bytes starting at msg to the socket specified by dest from the socket
associated with s. This datagram could be received by a process with access to
the dest socket if the process had code like:

int d;

in_addr source;

char msg[MAXMSG]; int len;

... tnitialize socket d with addr dest as above ...
len = receive(d, &source, msg, MAXMSG);

When a message arrives it will be placed in the buffer at msg with the mes-
sage length returned in len. If the length of the datagram is greater than
MAXMSG then this length will be returned but the part that would not fit in the
msg buffer will be discarded. Thus each receive call returns a single datagram,
and the source address from whence it came.

8.3.3. Properties of datagrams

Datagrams are not guaranteed to be delivered, nor are they capable of con-
taining an arbitrary amount of information. While we expect that some networks
will provide fragmentation facilities for datagrams that are too large to be
directly transported in the network, there may be a maximum size on the
datagrams imposed by limited buffering for reassembly or other considerations.
This would be expected, for instance, if only inira-network fragmentation was
provided and a long datagram had to cross a network for which it was too large.
Since the fragments of the datagram have to be reassembled at the exit gateway
we cannot be sure that there would be adequate space at that gateway to recon-
struct an arbitrarily long dategram [Shoch 78b].

The X.25 datagram protocol allows for only 128 data bytes in a datagram
[Folts 80). The Xerox Pup specifications and the IP datagram specification sug-
gest that messages with more than about 512 bytes of data be sent only if it is
known that the message can be delivered without problems in gateways. - This
seems like a reasonable suggestion to make. Although we impose no a priori
restrictions on the length of a datagram, we intend that a length of 512 bytes be
supported as much as possible. The constraints of the X.25 datagram protocol
seemn to be the most difficult issue here. 1If UNIX systems are communicating on
top of X.25 then a packet reassembly protocol could easily be used, but the case
where datagrams are being sent to a system other than UNIX that doesn't
include reassembly facilities is harder to address.

8.3.4. Discarding datagram sockets

Datagram socket descriptors are drawn from the same pool as file descrip-
tors, and are duplicated as {he normal file descriptors are in the UNIX fork sys-
tem call.

CSRG TR/3 ~— Draft of June 22, 1981 -- Joy/Fabry

IPC architecture -10 - IPC primitives

A datagram socket s may eliminated with a
close(s):

call; the socket is deactivated at the last close. Sockets not associated with
“portals’ or “‘associations” will have their buffered data discarded when they
are closed. Portals and associations are discussed in section 4.

8.4. Circuit facilities

To use a virtual circuit one first obtains a SOCK_CALL call director socket
that is associated with a specific network address. Calls may be placed from and
answered at this socket. Each call placed or answered yields a distinct new
SOCK_VC virtual circuit socket that allows for the reliable, flow-controlled
transmission of arbitrary amounts of data to and from the party at the other
end of the circuit. Circuits allow specially marked urgent information to be sent
and give out-of-band notification of the presence of urgent data. They also allow
record boundaries to be marked in the stream.

8.4.1. Creating circuit sockets

So that incoming and outgoing calls may be queued, a process must have
access to a call director socket to place or receive a call. A SOCK_CALL socket is
created with a socket call:

int s;
in_addr addr, pref;
s = socket{(SOCK_CALL, &addr, &pref);

The returned s is a *'file’’ descriptor for a socket for establishing virtual circuits,
by calling and receiving calls. When calls are placed or answered additional
descriptors are obtained for the SOCK_VC virtual circuit sockets corresponding
to the calls.

3.4.2. Answering calls
A call is received by doing:
int t;
in_addr caller;
t = answer(s, &caller);

This returns a descriptor for the new SOCK_VC socket for the conversation with
caller. Several answer calls may be done on a single call director socket; each
yields a SOCK_CALL virtual circuit socket representing a single conversation.

8.4.3. Placing calls

To place a call establishing a circuit one must first have access to a
SOCK_CALL call director socket at some address. Assuming the SOCK_CALL
socket exists as s created as in 3.4.1 above, then a call could be placed by:

int t;
in_addr callee;

... tnitialize callee ...
= call(s, &callee);

After placing a call, a new descriptor is obtained corresponding to the new

CSRG TR/3 — Draft of June 22, 1981 — Joy/Fabry

<

IPC architecture -11- IPC primitives

SOCK_VC virtual circuit socket. If the call fails then a value of —1 is returned for
¢ and the external variable errno is set to a characteristic error, as is usual for a
C program. When the conversation with callee is complete, the virtual circuit
socket t can be closed. -

S8.4.4. Input and output on circuits

We now describe the features of i/o on SOCK_VC virtual circuit sockets. The
facilities to be supported are derived from those available in common virtual
circuit protocols, and are similar to the interface described in [Gurwitz B1].

8.4.4.1. Reading and writing in stream mode

Processes can send and receive data on a circuit with the normal UNIX read
and write calls. Conversations are flow controlled by the underlying mechan-
isms: if the sender writes data faster than the receiver can accept it, the sender
will block. If the receiver reads data when none is available, it will block pending
receipt of more data.

In the default stream mode, a read returns as soon as data is available and
the system does not preserve any boundaries within the information stream.

3.4.4.2. Record mode

Circuits support a record mode, where each piece of data written on the
circuit is considered a single record, and reads return complete records. This
allows records to be read and written conveniently. The call

recordmode(s, 1);

sets a virtual circuit socket to be in record mode. A newly created virtual cir-
cuit socket is not in record mode. Record mode may be disabled by doing

recordmode(s, 0);

If you read only part of a record while in record mode because the buffer
supplied to read or the read buffering of the socket is insufficiently large to con-
tain the entire record, then the remainder of the record made available on suc-
cessive reads. The call

isbetween(s);
returns 1 if the specified stream is at a boundary between records, or O if it is
not.

If only the writer is in record mode, then reads will never return data
across record boundaries. If only the reader is in record mode then data will
normally be aggregated to requested lengths before being presented to the
reader.

A record may be created from data presented in multiple write calls by
turning record mode ofl, writing data as required, and turning record mode on
just before the last write in the record.

S3.4.4.3. Urgent data

Circuits support a notion of urgent data. A circuit can be set into urgent
mode by doing

urgentmode(s, 1);

or disabled by specifying a second argument 0. Data transmitted while in urgent
mode is marked, and causes the recipient of the data to process it specially. By

CSRG TR/3 - Draft of June 22, 1981 —~ Joy/Fabry

IPC architecture -12- IPC primitives

default, urgent data arriving on a circuit causes generation of a signal SIGURG.
This signal may be ignored if urgent data is to be processed synchronously.

The set of channels with urgent data may be determined by doing

in_sockets whichareurg;

... initialize whichareurg to interesting sockets ...
geturgent(IN_SOCKETS, &whichareurg);

This selects out of the sockets in the bit-mask whichareurg those with pending
urgent data; all other bits are cleared.
While a socket has pending urgent data the

moreurgent(s);

call will return true. When the next byte to be read is part of urgent data the
predicate

isurgent(s);
will return true.

The normal way of processing urgent data is to read out records from the
input until the moreurgent flag drops. Then the last piece of urgent data will
remain in the input buffer.

A single read call never returns both urgent and non-urgent data; it there-
fore suffices to check isurgent before each call to read to determine the type of
the data to be read.

3.4.5. Failure of circuits

If a permanent failure occurs in a circuit the circuit will be marked invalid.
A process that attempts to read from or write to a failed circuit will be given an
error indication and then sent a signal indicating a broken connection if further
reads or writes are attempted. When processing circuits asynchronously a
notification is sent immediately when a circuit fails; see section 3.5.3.

3.4.8. Circuits simulating pipes

A circuit can be used to simulate a pipe directly as the semantics are
upward compatible; the reverse direction of the circuit will not be used, and can
be disconnected to prevent accidental use. If the circuit fails, the signal sent on
the next access to the circuit performs the same function as the SIGPIPE signal
for pipes.

We will discuss the use of circuits to simulate other UNIX objects such as
files and file systems in section 4.

3.4.7. Closing sockets and circuits
The call

disconnect(t);

reports to the other party in a call that the call is no longer needed by sending
an end-of-file on the connection. The call will continue while the other party is
sending, and more data can be received on t, but no more data meay be sent.

When all copies of the descriptor ¢ created in fork or by dup have been des-
troyed, the circuit will be shut down after allowing the write buffers to drain.

Calls pending when a call director socket closes normally cause a new
server to be created to service it if the socket has & server via a portal or a

CSRG TR/3 - Draft of June 22, 1981 — Joy/Fabry

IPC architecture -13- IPC primitives

association; otherwise the pending calls are aborted (see section 4).

3.5. Multiplexing communication 7

In writing communications oriented programs it is often desirable to pro-
cess information arriving from more than one source. The proposed 1PC facili-
ties provide three mechanisms for use in handling communication with more
than one party: a synchronous facility based on the select statement, a facility
for preventing i/o operations from blocking, and an asynchronous facility based
on software interrupts.

The facilities proposed in this section are generally useful for UNIX and we
expect they will be gradually made available for more system services and dev-
ices.

8.5.1. Synchronous processing

To support synchronous processing of information from more than one
source we provide a select call, of the form:

int nsockets, nready:
in_sockets reads, writes;

nready = select(nsockets, &reads, &writes, timeout):

The select call is provided with a structure describing sockets that are interest-
ing; reads for sockets where readability is interesting and writes for virtual cir-
cuit sockets where writability is interesting. The system examines each
specified socket to see if there is an input or output operation possible on it, and
returns in reads and writes a list of all such sockets. Nsockets gives the count of
sockets representable by type in_sockets so that the size of the second and
third arguments to select need not be fixed in the system, ‘but may vary from

program to program.

Either reads or writes may be specified as O to denote that no sockets are
interesting to read or write. If no socket comes ready within timeout mil-
liseconds, the select returns, indicating that no sockets are ready. Timeout may
be O for immediate return or =1 to not return prematurely.

The name select is chosen from the name of the statement in the ADA
language [Ichbiah 79] whose semantics are similar. The select statement is also
similar to the qwait mechanism described in [Haverly 78], with the exception
being the way that the interesting sockets are described and returned. With
aqwait the system keeps a list of interesting file descriptors internally, instead of
having it specified at each call, and the return value is an array of integers
instead of than a bit mask. Await does not provide the timeout facility. Library
routines to simulate awail could easily be implemented using the facilities of

select.

An important point in the semantics of select is that it imposes no bias. The
mechanism for selecting among sockets that can be processed is left to the
user.

3.5.2. Non-blocking operations

To support servers and other processes that wish to not block in doing com-
munications processing, a call to set a socket or other UNIX file descriptor into 2
non-blocking mode is provided:

nonblocking(s, 1);

CSRG TR/3 - Draft of June 22, 1981 — Joy/Fabry

IPC architecture -14 - 1PC primitives

After setting a socket non-blocking, operations that would block because of
insufficient buffering on output or lack of available data on input will return a
new error ENBLOCK. This is normally returned to a caller in C as a —1 return
from a system call, with the global variable errno set to ENBLOCK.

The operation can be retried later, as select will report the socket ready
when it becomes unconstipated.

A call placed on a non-blocking call director socket will immediately return
a SOCK_VC virtual circuit socket descriptor, even though the call is not com-
plete. The returned file descriptor will select as ready for writing when the call
completes or fails to connect. At that point a status operation can be done on
the circuit socket to determine the status of the call. A timeout may be used
with the select to limit the length of time spent waiting for a call to complete.

3.5.3. Asynchronous processing

Certain applications may require that they be notified immediately when-
ever input/output is possible. If such asynchronous operations are required,
this can be enabled by doing:

asynchronous(s, 1);

Then when input is available or output becomes possible after a blockage the
process that is doing asynchronous processing on the socket is notified with a
SIGIO signal. A select with a timeout of 0 can be used to identify the subset of
the asynchronous sockets that need service.

chronous can also be used in addition to nonblocking when placing and
receiving calls. The sequence:

in_addr addr, dest;
int s, c;

... initialize dest in some manner ...
s = socket{(SOCK_CAlL, &addr, 0);
nonblocking(s, 1); asynchronous(s, 1);
¢ = call(s, &dest);

places a call on the socket s and immediately returns a descriptor ¢ because the
socket s is marked non-blocking. Because s is marked asynchronous, a SIGIO is
posted when the call to dest succeeds or fails and the call socket ¢ will appear in
a select as ready for writing. A status call, described below, can be used to
determine whether the call succeeded or failed.

A similar technique can be used with answer, if a call were placed to socket
s in the example above then a SIGIO would alsc be generated, and the socket s
would show as being readable, the data being the incoming call. A answer could
be used establish connection.

SOCK_VC virtual circuit sockets marked asynchronous cause SIGIO to be
sent immediately when the circuit fails.

Because of the specialized nature of asynchronous i/o and to avoid difficult
semantic and implementation difficuities only one process may mark a socket
asynchronous at a time.

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

IPC architecture -15- IPC primitives

3.6. Socket status
A status operation can be used to get the status of the socket:

in_status state;

status(s, &state);
in the following structure:
typedef struct in_status §

in_proto protocol; /* SOCK_DG, SOCK_CALL or SOCK_VC */
in_addr source; /* socket address */
in_addr dest; /* destination address, for circuits */
in_state state; /* state of the connection */
struct in_water srcwm; /* watermarks for sending */
struct in_water rcvwm,; /* watermarks for receiving */

{ in_status;

The protocol field tells the protocol the socket supports; the currently defined
protocols are SOCK_DG for datagram protocols, SOCK_CALL for call director
sockets where call and answer are possible, and SOCK_VC for the virtual circuit
sockets resulting from call and answer. The field addr is the address of this
socket. The field dest is used only for SOCK_VC sockets, where sockets obtained
by call or answer report the socket they are connected to here.

The field state shows the state of a call in a SOCK_VC, and has the values:

IN_CALLING Call is pending

IN_CALLFAILED Call failed

IN_OPEN Call has succeeded and circuit is open
IN_CLOSING Call is closing

IN_CLOSED Call has closed

IN_BROKEN Call broke due to some failure

The watermark fields specify the amount of transmit and receive buffering
in this socket. Each has the following structure:

typedef struct in_water §
int lowat;

int hiwat;
int timeout;
| in_water;

The hiwat watermark reflects the total amount of buffering available. The lowat
and timeout are used in non-blocking input/output. On output, a non-blocking
sender will receive an error when the high water mark is reached and the data is
not transmissible within timeout milliseconds. The sender will be notified when
the amount of output pending drops to the lowat watermark.

A receiver will be notified if lowat data accumulates, or if any data has
accumulated and timeout time has elapsed.

The lowat and hiwat are in bytes, and the timeouf is measured in mil-
liseconds. Reasonable defaults for the various fie!ds are set by the system. The
watermarks may be set by the user by

in_water rdwm, wtwm;

watermarks(s, &rdwm, &wtwm);

where either the second or third argument may be specified as 0 to specify that

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

IPC architecture -16 - IPC primitives

the read or write watermarks are not to be changed.

8.7. loctl, control and option setting

The interpretation of options for data transmissions such as priority and
security classifications varies from network to network and tends to be inter-
preted in ways that are hard to generalize to different networks. This is akin to
device control, where different devices will allow different operations. Instead of
specifying all possible options with each message to be sent, which would involve
complicated processing for each message, we will use per-socket state to local-
ize most of the option setting to the socket setup phase.

UNIKX currently provides an ioct! operation to deal with device specific con-
trol operations, and we wish to use a similar mechanism for socket option
specification. The ioctl mechanism suffers from a lack of specification of the
lengths of the control information being exchanged. We intend to define a new
operation that has ioctl's semantics but with full parameter specification. This
control operation will have the form

int f;

char *request;

char *idata; int ilen;
char *odata; int olen;
int reslen;

reslen = control(f, request, idata, ilen, odata, olen);

Here f is a UNIX file descriptor, request is a null-terminated string specifying the
request, idata is a string containing input for the request of length ilen, and
odata provides a place for storing the corresponding result value of maximum
length olen. The returned reslen is the length of the result, which may be
shorter than olen.

Specially interpreted in this context are 0 values for idata and odata, indi-
cating that no input parameters are given or output results are expected
respectively. To allow for the easy use of null-terminated strings in idata, a ien
of —1 will be interpreted as indicating that idata is a nuii-terminated string.

Within this framework we can define control operations on sockets to set
options. For example:

control(f, "precedence”, "high”, =1, 0, 0);
could set the precedence of the circuit f to be high and

char security[32]; int slen;

slen = control(f, "security”, 0, 0, security, sizeof (security)):

might return the current security of f as a character string to security.

The watermarks primitive of the previous section might be implemented
by:

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

-

IPC architecture -17- IPC primitives

watermarks(s, rdwm, wtwm)
int s;
in_water *rdwm, *wtwm;

if (rdwm)

control(s, "readwm", (char *)rdwm, sizeof(*rdwm), 0, 0):
if (wtwm)

control(s, "writewm", (char *)wtwm, sizeof(*wtwm), 0, 0):

!

We intend to study the appropriate standard set of control operations for
sockets and provide suggestions for such a set at a later date.

3.8. Examples

We now give examples using the described facilities. The first is a time
server program that creates an internetwork datagram socket to which a mes-
sage can be sent causing a message with the time to be returned. It could be
used by a small computer on a network to obtain the time of day from a central
server.

#include <inet.h>
#include <types.h>
#include <wellknown.h> /* defines WWV_ADDR and others */

/* tsaddr is the well-known-address of the time server */
struct in_addr tsaddr = WWV_ADDR;

main()

{
char buf[1]; int len;
in_addr addr;
int s;
char *ctime(), timestr;
time_t t;

s = socket(SOCK_DG, 0, &tsaddr);
if (s < 0) { printf("can’t get socket\n"); exit(1); §
for (:;) ¢

/-

* We receive a datagram and discard its contents,

* to get the address of the sender. A more sophisticated
* time server might handie several requests based

 on the contents of the received datagram.

L

receive(s, &addr, buf, sizeof (buf));

time(&t); /* get binary time */
timestr = ctime(&t): /* convert to string form */
send(s, &addr, timestr, strien(timestr));

]
)

Here the socket call associates this process with the time server socket whose
address is specified, returning —1 if there is something wrong with ts_addr (i.e.
not providable on this machine) or if the socket is already in use (e.g.- by

CSRG TR/3 — Draft of June 22, 1881 — Joy/Fabry

IPC architecture -18 - IPC primitives

another instance of the time server). If the socket is openable the server loops
reading a packet from the socket for the sole purpose of obtaining the address it
came from and sending back the time without further ado.

The second example is that of a telnet server creating server processes
(login commands) each time someone connects to the telnet socket:

#include <inet.h>
#include <signal.h>
#include <wellknown.h>

struct in_addr teladdr = TELNET_ADDR;
main()

void reaper();
int s = socket(SOCK_CALL, 0, &teladdr);

if (s < 0) { printf("can't get socket\n"); exit(1);]
sigset(SIGCHLD, reaper);
for (::) ¢
int t = answer(s, 0);
if (fork() == 0) {
dup2(t, 0); dup2(0, 1); dup2(0, 2);
close(s); close(t);
execl(''/etc/tellogin”, 0);
exit(1);

close(t):

J

#include <wait.h>
/* reaper() allows all children which have died to exit */
void reaper() { while (wait3(0, WNOEANG. 0) >= 0) continue; !

Here the basic server answers to the telnet socket it created. Each time a
connection is made to the virtual circuit socket a new instance of a special login
server /etc/tellogin is created. When a loginis complete, the child exits and the
reaper routine is calied with a signal; it collects the terminated children.

The previous program makes use of an asynchronous facility for handling
process termination. A reasonable extension to UNIX would be to provide a
record on a special circuit when child processes terminate. This program could
then be written using select to service the two circuits synchronously.

Assume that a call waitsocket yields a socket on which messages of type
child_status are placed when child processes terminate. The above example
could be written as follows:

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

-

IPC architecture -19- IPC primitives

#include <inet.h>
#include <signal.h>
#include <wellknown.h>

fdefine FOREVER -1

struct in_addr teladdr = TELNET_ADDR;
in_sockets sandp, choose;

main()

int s = socket(SOCK_CALL, 0, &teladdr);
int p = waitsocket();
int t;

if (s <0l p <0) { printf(""can’t get socket\n"); exit(1): }
setsocket(&sandp, s); setsocket(&sandp, p);
for (i:) ¢
choose = sandp;
select(IN_SOCKETS, &choose, 0, FOREVER);
while ((i = getsocket(&choose)) >= 0) {
if i==p)t
child_status chstatus;
read(p. &chstatus, sizeof (chstatus));
continue;

= answer(s, 0);

(fork() == 0) ¢
dup2(t, 0); dup2(0, 1); dup2(0, 2);
close(s); close(t);
execl("'/etc/tellogin”, 0);
exit(1);

)
t
if

{
close(t);

CSRG TR/3 - Draft of June 22, 1981 — Joy/Fabry

IPC architecture -20 - Application facilities

4. Application support

We now consider system facilities for provision of services to applications.
UNIX application programs normally interact by using names in the UNIKX file
system name space to gain access to resources. The traditional UNIX file system
is a hierarchical structure containing files, directories and special devices. We
extend this space by allowing a new type of object, a portal, to be placed in the
file system name space. A portal is a gateway to a server process.

Different types of portals exist corresponding to the different object types
in the UNIX file system: files, devices and directories. An additional portal type
provides access to symmetric virtual circuits. Portals allow rendezvous between
processes to be controlled by the UNIX protection mechanisms and allow servers
to build remote file systems and other resources representable in the tradi-
tional UNIX name space.

Server processes for portals are created if the portal is referenced and the
server does not exist. We also describe here an association mechanism that
allows for automatic creation of servers for the internetwork name space.

4.1. Creating servers in UNIX name space: portals

The mechanism whereby services may be created in the UNIX file system
name space involves creating a bridge between the file system name space and
an IPC socket called a portal. Portals are client/server links and as such are
asymmetric. The client accessing the portal may well be unaware that the
object referenced is not a traditional UNIX object; in all but the most trivial
cases, the server of the portal is interpreting a protocol and is cognizant of the
existence of the portal.

4.1.1. Creating portals
A portal is created by the call

enum § PORTAL_CALL, PORTAL _FILE, PORTAL DEV, PORTAL_DIR; { kind;
char *name;

int mode;

char *server;

int s;

s = portal(kind, name, mode, server);

where name is the pathname for the portal, mode is the UNIX protection mode
for name, and server is a specification for the server to be invoked when the
portal is accessed. The kind specifies the type of portal, and thereby specifies
the protocol generated by the kernel for operations by client processes on it.
The s returned is a descriptor for a SOCK_CALL call director socket to which the
kernel will place calls when opens are done on name.

The socket types are implemented by the kernel by translating system calls
applied to the file descriptors returned from opens on a portal into data on the
SOCK_VC sockets the server receives when it answers calls.

A PORTAL_CALL portal acts like a virtual circuit socket, and simply passes
reads and writes onto the underlying SOCK_VC socket.

A PORTAL FILE translates reads and writes on the underlying SOCK_VC
resulting from an open into a record-oriented request packet to the server. The
kernel expects an appropriate reply to complete the operation for the client.
Operations fstat and lseek are also possible on descriptors obtained by clients
by opening a PORTAL_FILE.

CSRG TR/3 - Draft of June 22, 1981 — Joy/Fabry

IPC architecture -21- Application support

A PORTAL_DEV is like a PORTAL_FILE, but also allows conirol operations, the
generalization of ioctl that was described in section 3.7. A PORTAL_DEV thus can
be used to simulate a general UNIX device, such as a terminal.

A PORTAL DIR can be used to simulate a UNIX directory, as calls such as
open, unlink and creat are translated into appropriate protocol. A result of
such a call is often another connection to a service process to provide a file
interface via the PORTAL_FILE or PORTAL_DEV protocol.

We describe these protocols in more detail below.

UNIX protection modes are used to control access to the sockets associated
with a portal. The call director socket for a portal is not accessible using inter-
network addresses. It is therefore accessible only using a reference through the
file system name space.

4.1.2. Server establishment

The service process need not exist when a portal is first referenced. If it
does not, a socket is created and associated with the in-core information about
the file system entry for the portal. The server string is taken as a path name of
the server program and that server is created in the environment of the process
referencing it, receiving as descriptor 0 the socket associated with the portal,
inheriting the current directory and user-id of the accessing process. The
server process may be set-user-id to allow it to run in a different protection
domain. The server process created has as parent the process that created it
but is marked to not notify the parent when it finishes execution, since the
accessing process is not aware of its presence.

The portal process may service more than one request on the descriptor or
exit at any time. Processes accessing a portal may wait for the server to service
them much as callers wait for an answer to occur on a virtual circuit.

When a portal is created the portal call returns a descriptor for the portal.
Portals thus are created live. If the pointer to the server in a portal call is O,
this portal is accessible only while it is live; the portal will be closed if the server
dies. A process may thus establish a portal that it will serve and bypass the
server creation mechanism.

4.2. UNIX service protocols

As mentioned above, the UNIX system defines a protocol for each portal
type that the server should implement. Such protocols have been studied for a
many systems; some recent examples are [Donnelley 80] [Lantz 80] [Rowe 81]
[Ward 80). Complete specification of the protocols to be supported by UNIX will
not be given here. We will instead outline some simple protocols to show the
flavor of such facilities.

4.2.1. PORTAL_CALL protocol

The protocol for a PORTAL_CALL is trivial: each open system call on the por-
tal causes a call to occur to a virtual circuit socket corresponding to the portal.
The server does an answer to establish a circuit in the normal way. The result-
ing descriptors may be used by both the client and the server as a normal, sym-
metric virtual circuit.

CSRG TR/3 — Draft of June 22, 1981 — Joy/Fabry

IPC architecture -22- Application support

4.2.2. PORTAL_FILE protocol

The PORTAL_FILE protocol extends the PORTAL_CALL protocol by imposing 2
request/response exchange on each read, write, lseek or fstat operation on the
portal. Like all portal protocols except PORTAL_CAlLL, this protocol is asym-
metric: the portal process acts as a server and the process that opened the por-
tal acts as a client.

A portal operating in request/response mode is placed in record mode, and
each record corresponds to a request or a piece of data for a request.

A read request on a PORTAL_FILE generates a record containing the word
“read"” (as an ASCII string) and the length of data to be read in bytes. So that
the information is portable, the data length is given as a printable ASCII string.
Thus a read of 10 bytes would result in the string

read\n10\n

being presented as a record to the server process.
The server process would answer such a request with either

error\nerror-message\n
or
data\niO\nthe-data

These responses are interpreted by the kernel to complete the call from the
user.

Write, fstat and lseek define request/response pairs in a similar way.

If an error occurred in accessing the PORTAL FILE requiring cancellation of
a pending operation by & client, the kernel would resynchronize the connection
by sending a urgent message to the server. The server would respond with an
urgent message of its own, completing the resynchronization.

When the client closes the file the server receives an end-of-file on the cir-
cuit, in the normal way, allowing it to clean up.

4.2.3. PORTAL_DEYV protocol
The PORTAL_DEV protocol extends the PORTAL_FILE protocol by allowing the

operation control to be applied by the client. If a control is applied to a
PORTAL_FILE by a client it is simply refused by the kernel.

4.2.4. PORTAL_DIR protocol

To build a name space that is accessible directly in the UNIX file system we
can build a directory server, handling calls such as open, creat, chdir and unlink
with pathnames that have as prefix the name of a portal, but may include an
additional suffix that is interpreted by the portal server. A typical use of a
directory portal would be to build a remote file system.

Protocols for such directory servers have been constructed in Cocanet
[Rowe 81] and in Trix [Ward 80].” They are also present in link-based systemns
such as Demos [Baskett 77]. A directory server protocol specifies a translation
of normal file system operations into messages on connections to the directory
server. An access to a name in a directory server space would create a connec-
tion to the directory server and pass as parameters the identity of the user,
identification of the request, the path name suffix, and parameters of the opera-
tion. The translation of the operation into a record sent on a dynamically
created circuit occurs in the UNIX kernel.

CSRG TR/3 -- Draft of June 22, 18981 — Joy/Fabry

IPC architecture -23- Application support

The directory server responds to such a request in one of several ways, as
specified by the options of the protocol. It could provide the information
requested by the operation directly and thereby complete the operation. It
could implement the connection implied by a file open by reusing the connection
used to present the request, perhaps using 2 child process to provide the
required services. It could provide the caller with an internetwork address and
authentication for the caller to use in continuing the operation by interacting
with another server.

The exact options to be used in the standard UNIX directory server protocol
will be the result of experimenting with these and other possibilities and is
beyond the scope of this paper. There are a many techniques adequate for use
in the protocol; the choice of a standard protocol will be made because of con-
venience, efliciency and generality.

To fully support the notion of a virtual file system or other resource name
space we require a slight generalization of the UNIX process state, such that the
notion of a current directory is generalized from being a reference to a device
or file in the file system to being a communications link. This allows the current
directory to be in server supplied name space.

4.3. Creating servers in internetwork address space: associations

Recall that portals are not accessible using the internetwork addressing
mechanisms, so that UNIX protection applies to them. It is thus necessary to
provide a separate facility to allow servers to be dynamically created as a result
of internetwork address space references.

The call

in_addr addr;
in_proto kind;
char ®*server;

associate(&addr, kind, server);

specifies that a server of type kind is to be provided for internetwork address
addr; the address must be on the current machine. A reference to the address
addr causes the specified server to be created and given access to the newly
created socket of type kind, either SOCK_DG or SOCK_CALL. The created pro-
cess will be run with user-id and group-id of the user who supplied the associa-
tion, from the root directory of the file system, and with the system initialization
process as parent. The power to create associations may be limited administra-
tively on a particular machine. 1t is likely that certain internetwork addresses
will be reserved to privileged user-id’s, and that normal users would not be
allowed to specify these addresses for associations.

An association may be removed by a
disassociate(&addr);
For a general discussion of the kinds of protocols and facilities that are

appropriate for the network address space see [Abraham 80] [Donnelley 79]
[Lantz 80] and [Sproull 78].

CSRG TR/3 — Draft of June 22, 1981 — Joy/Fabry

IPC architecture -24 - Application Support

4.4. Examples
We first show a mail server utility that looks up forwarding addresses:
main()

int p;
char *lookup():

unlink("forwarding");
p = portal(PORTAL_CALlL, "forwarding", 0666, 0);
for (;;) §
int s, len;
char name[128]; char *addr;
s = answer(p, 0);
recordmode(s, 1);
len = read(s, name, sizeof (name));
addr = lookup(name);
write(s, addr, strlen(addr));
close(s);
]
)

The server creates a portal named forwarding of virtual circuit type. If you
want to look up a forwarding address you can do:

FILE *f = fopen("forwarding", "rw");
recordmode(fileno(f), 1);

fprintf(f, "jones\n");

fgets(f, buf);

We could also write a server to be created automatically instead of manu-
ally. We would create the portal using a cail:

portal(PORTAL_CALL, "/etc/forwarding”, 0666, " /eic/forwarder");

Then when the file /etc/forwarding is first referenced, a /etc/forwarder will be
created to service it. This portal would normally be created by a shell com-
mand:

¢ portal call /etc/forwarding /etc/forwarder
The server would be created with descriptor O referring to the portal, and would
be written:

main()

char *lookup();
for (::) §

int s, len;
char name[128]; char *addr;

s = answer{0, 0);

recordmode(s, 1);

len = read(s, name, sizeof (name));
addr = lookup(name);

write(s, addr, strien(addr));
close(s);

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

IPC architecture -25- Application support

]
]

A server could be created in internetwork space by using a socket instead of
a portal, or automatically created on reference in internetwork address space
using a association. Assume that an internetwork registry exists on the local
network and we wish to create a service program that will be known to the regis-
try. The following program creates an association for the server and registers it
with the registry. This program could be invoked as

$ register servicename program

to register servicename to access program. We assume that the registry
operates by accepting a call from the program followed by three records on the
connection: the operation type as the first record, consisting of the word regis-
ter for registration requests. For registrations the second record is the name to
be registered, and the third record is the internetwork address.

Note: in this example we use printf to print error messages; in a production
program we would use the C library routine perror that looks up an error mes-
sage, and can yield more precise systemn characterizations of the error. We use
printf here since the error messages in the source can help understand the pro-
gram while calls to perror would all have the form

perror(x);
where z would be s or ¢. This is not enlightening to the code reader.

#include <inet.h>
#include <wellknown.h>

in_addr registry = REGISTRY_ADDR; /* well-known */
in_addr serviceaddr;
char response[128];

/t
* register servicename program
main(argc, argv)
int argc;
char *argv[];

ints, t;
char *servicename, *program;

if (arge = 3) {
printf("usage: register servicename program\n");
exit(1);

]

servicename = argv{1];

program = argv[2];

-

* Get a socket to call the registry with.

* Since both this and the socket to be registered

* are assumed to be call director sockets we simplify

* the program by just registering the socket we are talking on.
L]

s = socket(SOCK_CALL, &serviceaddr, 0);

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

IPC archite

!

¥We note in

cture -26 - Application support

if (s < 0) { printf("'no sockets available\n"); exit(1); }
t = call(s, ®istry);
if (t < 0) { printf("'registry doesn't answer\n"); exit(1); }
if (associate(&serviceaddr, program) < 0) {
printf("'can’t associate service\n");
exit(1);

recordmode(t, 1);
write(t, "register”, 8);
write(t, servicename, strlen(servicename))
write(t, &serviceaddr, sizeof (serviceaddr));
disconnect(t); /* so it knows we think we are done */
if (read(t, &response, sizeof (response)) < 0} {
printf("'no response from registry\n");
exit(1);

J

if (stremp(t, "ok") != 0) §
printf("error registering: Zs\n", response);
disassociate(&serviceaddr);
exit(1);

!

passing that the placement of the service name in the registry and

the placement of the association of the name in the local association table would
ideally be done as a single distributed atomic operation.

CSRG TR/3

-- Draft of June 22, 1981 — Joy/Fabry

IPC architecture -27- Comparisons

5. Comparisons

In this section we contrast the proposed facilities with current facilities in
UNIX, examine other protocols and primitives available for IPC, look at facilities
of tightly coupled networked systems, and examine the facilities of other sys-
tems that allow access to networks and network IPC facilities.

5.1. Current UNIX facilities

The version 7 UNIX systems include four facilities that may be used for
interprocess communication: pipes, the mpz multiplexed file facility, signals,
and the debugging facility ptrace.

5.1.1. Pipes

The pipe facility provides a reliable one-directional byte stream, and is
much like a half of a virtual circuit, except that no facilities other than raw data
transmission are possible and no record boundaries are available. Pipes are a
strong facility for program composition [Kernighan B1], but as they are permit-
ted only between processes that have common ancestry, they provide only a
weak form of interprocess communication.

The virtual circuits in our proposal can be used to supplant pipes. The
default semantics of a virtual circuit allows them to be used as inter-machine
pipes. The error reporting and closing of a virtual circuit is upward compatible
with that for a pipe. Note that PORTAL_CALL portals can be used to build gen-
eralized ‘‘named”’ pipes.

5.1.2. Multiplexed files

The mpz multiplexed file facility provides for creation of trees of UNIX file
descriptors by attaching one or more file descriptors to a multiplexed file
descriptor. Reads from the multiplexed file select from data available on any of
the files in the multiplexed tree, returning the source channel address and the
data. Opens on the multiplexed file provide a control record on the multiplexed
file. A response to this connects or refuses the connection. Terminals may be
incorporated into a multiplex tree and control operations on the terminal are
turned into special packets allowing the multiplexing process to simulate the
control operations and provide responses.

Our facility provides an analogue of the tree crealion by allowing a server to
select the set of serviceable file descriptors. The server can choose a descriptor
to service first. This is more general than the multipiexor scheme of picking the
descriptor to be serviced in a way that the user cannot control. The select facil-
ity also provides a timeout not availatle in the multiplexor scheme.

Connections to circuit servers in our facility would normally be answered by
an answer call creating a new circuit. This is in contrast to the multiplexor
scheme where a aftach or detach follows receipt of a record on the multiplexed
file.

Virtual circuits in our scheme are symmetric while multiplexor connections
are asymmetric and thus resemble portals of type PORTAL_CALL. The genera-
tion of control records on a terminal device so that higher level emulation may

be done is a useful feature of the multiplexor, provided in our scheme by using a
PORTAL _DEV.

CSRG TR/3 - Draft of June 22, 1881 — Joy/Fabry

IPC architecture -28 - Comparisons

5.1.3. Signals

Signals in UNIX provide a weak interprocess communication channel. A pro-
cess may send a signal to another, causing it to execute a parameterless signal
handler. In the Berkeley VAX versions of UNIX signal handling has been
extended so that signals may be handled reliably, processing them as software
interrupts much in the style of hardware interrupts.

A different implementation of UNIX-like signals has been designed for the
Series/1 distributed system [Sincoskie 80]. SODS/0S is a message based distri-
buted system whose aims are location transparency and distributed control in a
decentralized system. The objects of the system are processes and exchanges,
where an exchange is a fifo queue of messages. Access to exchanges in SODS is
controlled by capabilities maintained by the kernel.

SODS is interesting in that it implements several mechanisms that appear
distinct in UNIX as different message classes. Thus signals and exceptions
appear a special messages as do messages that interrupt a process when they
arrive at its exchange. This view of these conditions is necessary to a simple
model of the system, and is a good goal for evolution of UNIX mechanisms.

5.1.4. Ptrace

The process trace facility provides a weak form of interprocess communica-
tions used for debugging. The facility is unpleasant to use and the bandwidth
available to the debugger is low. Casting this facility as a interprocess commun-
ications protocol would clean up this messy facility, make debugging much more
efficient, and allow debugging of distributed programs, permitting the process
being debugged to be on a different machine.

Development of a protocol for debugging in UNIX seems a simple and
worthwhile exercise; such a protocol can easily be layered on top of the virtual
circuit facility.

5.2. Other communications primitives

There exist other protocols and styles of IPC than the ones we are propos-
ing. In this section we present some of these alternatives and comment briefly
on each.

5.2.1. Reliably delivered messages

Many distributed systems services are based on the exchange of single mes-
sages to accomplish a transaction, where little state is kept at the end points. A
large amount of effort and several messages must be sent to set up a connection
for a single message exchange [Belsnes 75]. This suggests that either a pair of
datagrams or a special protocol should be used to accomplish message
exchange.

The Livermore Network Operating System includes a acknowledged
message-exchange protocol as the basis for its network IPC facilities [Donnel-
ley 79] [Fletcher 80] [Watson 80a] [Watson 80b]. This facility is built using a
timer-based protocol that depends on the limited lifetime of packets in the
internetwork [Sloan 79].

We do not hold with this style of acknowledgments in a system. We believe
that the fundamental responsibility for consistency of system action belongs at
higher levels of the system, and that a distributed transaction based system
should be built from a simpler model of unacknowledged datagram facilities.
Low-level acknowledgments can be used to increase performance of transport
protocols, rather than being used to impart semantics to message delivery.

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

-

IPC architecture -29- Comparisons

If a network supports the lifetime counters needed to allow timer based
protocols and an implementation of these protocols is available, the facilities
could be easily be added using a new socket type.

We note that protocols such as that of [Finn 79], that provide reliable fail-
safe message delivery in a network capable of ‘‘resynchronization™ are of
theoretical interest, but feel that wide-ranging synchronization will be impracti-
cal in a large internetwork, and thus that this protocol and similar protocols will
be of use only in limited contexts. Mechanisms based on them were thus not
considered for inclusion in the IPC facilities.

5.2.2. X.25 fast select message exchange

The X.25 fast select facility [Folts 80] provides a message exchange,
whereby a message is sent and a response or refusal returned. The initial mes-
sage is piggybacked on a circuit open request and the response is piggybacked
on the refusal to connect. This refusal must be acknowledged, completing a
three-way handshake. The fast select facility can be used for short query-
response situations.

Because of the timing constraints imposed on the response (it must occur
quickly) and the limitation to 128 bytes in the messages exchanged, we do not
see fast select as being nearly as useful as datagrams or circuits, and did not
include fast select primitives in our IPC facilities.

5.2.3. Broadcasting and multicasting

Where local hardware admits or networks support broadcast capabilities we
expect that they will be made available at a well-known address in the internet-
work address space. Reliable transmission of the same message to a specified
list of sites, referred to as multiaddressing or multicasting is useful in data
base work [Rowe B1] and appropriate protocols can cut the traffic significantly.
If protocols to do multicasting become more available, a system interface to
multicasting facilities can be provided based on the virtuai circuit facilities.

The use of multi-addressing impacts the naming and addressing considera-
tions in the internet, especially the way in which localion independence is
achieved [McQuillan 78]. Our scheme is sufiiciently flexible to allow various
approaches to be tried.

5.2.4. Remote procedure calls

Some interprocess communications mechanisms use message exchanges to
build remote procedure calls [Feldman 79] [Nelson 80] because the inlerprocess
communication can be made to have semantics like the more familiar single
processor case, although there are several difficulties in making remote pro-
cedure cells transparent [Lampson 81b). Other researchers consider that hid-
ing the semantics of remote invocation is not a good idea, and that servers for a
distributed environment should instead be written to dea! with the semantics of
communication [Svobodova 79]. As an example, the occas‘onal duplication of
messages can be remedied by making the servers aware of this and constructing
them to be idempotent [Liskov 79).

We consider remote procedure calls to be largely a linguistic facility, as
some of the semantics of remote procedure calls cannot be hidden easily.
Because of the linguistic nature of remote procedure call, the involved semantic
issues, and the lack of a single clear implementation for this facility, we defer
the implementation to the applications at the language level. Remote procedure
calls can be built as a protocol on either the datagram or virtual circuit facility.

CSRG TR/3 - Draft of June 22, 1981 — Joy/Fabrv

IPC architecture - 30 - Comparisons

5.3. Other styles of IPC

We next consider different IPC styles, including the link-based style of
Demos [Baskett 77], the use of capabilities in IPC [Fletcher 80] [Chaum 78], and
the port-based IPC of [Rashid 80].

5.3.1. Link-based IPC

Several systems have been constructed based on the link model used in
Demos [Baskett 77] [Solomon 79]. Links provide a good basis for IPC in distri-
buted systems, but do not generalize easily for use across protection domains.
For instance, in a single protection domain the system can guarantee properties
of links such as *‘use once” and “do not duplicate”, but when multiple domains
are involved a single kernel cannot completely control the distribution of links,
and a different scheme must be used.

Link-based IPC is an interesting paradigm for control of communication.
We expect that link-based schemes can be constructed on top of our IPC by
applications that do some authentication on communications and pass
addresses with authenticating information as the link tokens. This is really a
special case of distributed capabilities. The difficulties implicit in providing reli-
able messages without the overhead of explicit connections must also be deailt
with [Belsnes 76]. Techniques used for implementation of remote procedure
calls may prove useful [Nelson 80] [Lampson 81b].

5.3.2. Authentication in multiple protection domains

The difficulties of supplying authenticated access to objects in multiple pro-
tection domains can be overcome by using encrypted capabilities [Chaum 78]
[Needham 79]. The Livermore NOS design [Watson 80a) supports a standard
form of a network capability that includes a network address, resource identifier
and authorization information [Fletcher 80]. Such a convention, when combined
with the IPC mechanisms described in section 3, can allow convenient authenti-
cation of access to distributed resources.

We expect that standard capability forms will be developed for use by
servers in an internetwork environment. Servers will allow access to their ser-
vices only when presented with the authenticatable capabilities. Such services
cannot be assumed to be provided by the basic IPC mechanism because authen-
tication is both a distributed and layered problem. See [Nelson 79] for a discus-
sion of the role of encryption in layered systems, and [Kent 78], [Needham: 78]
and [Popek 79] for general discussions of cryptographic protectionin systems.

5.3.3. CMU ports

A UNIX IPC mechanism based on ports and typed messages has been imple-
mented at CMU [Rashid 80]. Ports are the destination of messages and may be
moved from machine to machine. The port originating a message is received
with the message but it is not possible to use the origin to determine the loca-
tion where the message came from. Capabilities are vsed to access ports, and
may be passed in messages. The IPC facility also has the capacity to collect
structured information to be passed from scattered location in the users
address space, and to then return the structured information, although the
information must be presented linearly in the target address space.

The port naming scheme is high level, since the names cannot be used to
determine port location. Port names are not related to network addresses, but
are manipulated and protected internally by the IPC. This makes them difficult
to use in a heterogeneous environment, containing systems not running CMU

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

IPC architecture -31- Comparisons

IPC.

A different approach is to build naming eand protection as a layer visibly
above the internetwork addressing. Our approach would be to build the names
for IPC objects from more primitive addresses, making explicit the role of ser-
vice identifiers and the problems of authentication in an internetwork. See
[Abraham 80] [Redell 79] and [Watson 80a] for system designs with similar
approaches.

The facilities for passing typed messages are asymmetric: the kernel can
gather the information from but cannot scatter it back to the target address
space. We believe this reflects improper layering, and feel that abstract data
type transmission is the proper function of the presentation layer of the system,
not the IPC kernel. In a system like UNIX where the kernel is primarily an i/o
multiplexor [Thompson 76] we believe such functionality should be in the
language libraries.

We expect that mechanisms similar to those of [Herlihy 80] are the ones
required for a clean and efficient implementation of typed message passing.
Similar facilities will be needed in Mesa run time support to support remote pro-
cedure calls [Nelson 80]. Until such facilities are well understood they should be
isolated in a layer where they can be easily changed as the software technology
advances.

5.4. Tightly coupled systems

There are a several tightly coupled network based operating systems
relevant to the discussion of the IPC. In general, our IPC architecture views
tightly coupled systems as a single machine. The problems of protection and
autonomy are expected to be addressed for the tightly-coupled machines acting
as a single entity.

5.4.1. Cocanet

Cocanet [Rowe 81] is a distributed UNIX system for a local network environ-
ment. It provides remote file and commeand execution as well as three kinds of
interprocess communication: datagrarms, unicasiing (circuits) and multicasting
for database applications. The facilities are construcied to tightly couple UNIX
systems into a single computing resource.

As we noted in section 2.3 and in the seclicn on Brozdcasting and Multicast-
ing above, the interprocess comrnunication facilities of Cocanet are available in
our scheme or easily provided. The naming implicit in interprocess communica-
tion and remote file access can be constructed using appropriate portals and
protocols. It will be interesting to compcre the complzxity and efliciency of
these two approaches to providing distributed UNIX services.

Cocanet does not provide any services for access to resources in the inter-
network outside its domain, or for more general communications.

5.4.2. Locus

Locus [Popek 81] also provides distributed system services, and is much
more tightly knit than Cocanet. While Cocanct services ere provided by server
processes, the sharing and multiprocesser neture of Lotus is provided by low-
level interchanges. between the system kernels. Locus iz ambitious, providing
transaction based file system operations, replication, and attempts to continue
to operate in the presence of systern partitioning faiiv-es

While the Locus facilities can be provided in our schieme much in the style
of WFS [Swinehart 79] or DFS [Sturgis 80], we expect that differences in

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

IPC architecture -32- Comparisons

complexity, style and performance characteristics of the two approaches may
be non-trivial, since the facilities to be provided in Locus are complex.

In relating our IPC proposal to Locus we would consider that the single-
machine case for our IPC, where the portal facility would be used, would encom-
pass the set of machines accessible using the facilities of Locus. Outside this set
of machines the Locus facilities would be unavailable, but similar facilities could
be provided using the facilities of the IPC and directory portals, perhaps by
interacting with the facilities of a non-UNIX DFS.

5.43. Trix

The TRIX system design [Ward 80] provides a view of an operating system
where all objects can be represented by processes. An asymmetric view of com-
munication is taken, where the relationship between processes is always that of
a client and a server. Interprocess communication occurs on bi-directional
streams. The TRIX design includes protocols implementing the standard system
object types much as we define the protocols for the difierent types of portals.
It uses descriptors passed through the IPC facility in a link-passing style to con-
trol access to the communications facilities.

Trix has several difficult issues to deal with because it treats all system
objects as processes. In particular, consistency of the system across a crash,
reachability of objects in the file system and garbage collection of unreachable
objects, buffering of messages, the limited lifetimes of processes and manage-
ment of removable storage volumes all seem troublesome.

These issues are not prominent in the UNIX IPC design because we are not
designing an entire system based on the portal model. We believe, however, that
the portal facility and the provision for automatic server creation will provide
facilities nearly as flexible as those proposed for Trix, without the attendant
problems.

5.4.4. livermore NOS

The Livermore Network Operating System [Donnelley 79] [Fletcher 80]
[Watson 80a] provides homogeneous network services on a heterogeneous set of
machines building from a layered system model. The model used in developing
this system was also used in our design, and hence our system facilities have
corresponding facilities in the LLL NOS. LLL NOS uses timer-based message
exchange protocols as were previously geccribed, and is thus based on different
primitives than we are assuming for our internetwork.

As we have already mentioned, LLL NOS has a universal address space for
communication and also develops a stancerd form for a capability with authenti-
cation. Levels of kernel services provide inierpretation of these capabilities.

We expect that levels of services will be provided by UNIX systems much like
those of LLL NOS. Standard forms for authenticated capabilities may be desir-
able in the UNIX environment, correspon:ing to those of LLL NXOS, and conven-
tions for these forms can be easily experirented with.

5.4.5. Accent

Accent is a network operating syster being consiructed at CMU absed on
the CMU ports described in section 5.2.7 | Rashid 81]. The IPC facility for Accent
has been implemented in VAX UNIX [Rasii:d 80], while the full Accent implemen-
tation is supported by PERQ microcode.

In Accent the kernel provides pamung, tvped message transmission and
authentication mechanisms. All system facililies are provided by the kernel and

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

IPC architecture -33- Comparisons

server processes in a message passing style. Accent is thus a network system in
the style of LLL. NOS [Watson 80a], with most of the layers pre-defined by the sys-
tem.

In contrast to Accent, our service naming, type conversion and internet-
work authentication facilities are layered outside the basic IPC mechanisms and
outside the UNIX kernel. This allows different approaches to providing these
facilities to be tried. Our IPC proposal is thus more in the style of Pilot
[Redell 79].

We believe that both approaches to IPC are valuable, and that several
different systems with high-level facilities similar to those of Accent can be tried
based on our IPC primitives.

5.5. Loosely couplable systems

In this section we examine systems and subsystems that provide IPC facili-
ties in a less tightly coupled (usually more layered) fashion.

5.5.1. BBN UNIX TCP/IP

The BBN TCP/IP implementation for UNIX [Gurwitz 81] provides access to
the facilities of the Transmission Control Protocol and Internet Protocols
developed by the Internetwork Working Group [Postel 80b] [Postel 80c] for use
in the ARPANET and the military AUTODIN II network. The facilities provided by
the Transmission Control Protocol were the model for the virtual circuit facili-
ties described in section 3, and therefore a clean and simple interface between
the TCP and the IPC should be possible. The modest requirements of the
datagram interface should be easy to provide using the IP Internet Protocol.

Using the IPC it should be possible to build and access services in the
ARPANET and connected networks that speak the Internet protocol in a uniform
way.

5.5.2. Pilot

The Pilot system [Redell 79] is Xerox's operating system for a personal com-
puter in the Ethernet. As previously discussed, the communications architec-
ture of the IPC is closely related to the structure of Pilot. In particular, we
intend that the internal structure of UNIX systems that are to act as internet-
work gateways will be similar to that of Pilot.

We will not repeat here the more detailed compariscn with Pilot; see section
2.3.

5.5.3. Purdue ECN UNIX

A local network of computers has been constructed at Purdue University in
the Electrical Engineering department based on a store-and-forward facility
using the service computers as the message Drocessors [Hwang 81a)
[Ewang 81b]. The transport protocols used in this network are simple and
efficient, and the throughput in the network is high. The basic primitives for
accessing the network include a primitive to obtain a free network file from a
pool, a primitive to wait for a connection to a sy zcified local socket, and a primi-
tive to connect to a specified foreign socket. Tres2 correspond in a natural way
to the primitives of our proposed 1PC facility.

The high-level facilities of the ECN include remote command execulion,
remote login, and a load-sharing commend execution faci’ity. Provision of simi-
lar facilities in an internetwork of systems using our iPC design should thus be
straightforward.

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

-

IPC architecture -34 - Implementation

6. Implementation

Ye now describe the way in which the various proposed facilities are (or are
to be) implemented, and then give some indication of the performance of a pro-
totype implementation compared with CMU's UNIX IPC.

B8.1. Sockets

Each socket consists of a structure containing the basic parameters
(related to the status of the socket) and some information linking it into the
internetwork address space so that it can be located as necessary. In addition,
there is an internal data structure used to store data queued in the socket; this
data structure consists of a circular buffer in virtual memory. Data arriving to
the socket is stored in the circular buffer wrapping end-around as needed.
Record boundaries are given by control information inciuded in the circular
buffer.

A single socket structure and a single data buffer suffice to build a
datagram socket and also build UNIX pipes. A virtual circuit socket from which
one can do call and answer operations can be instantiated by a single socket
structure with some additional information about waiting calls. Two sockets,
one for input and one for output, each with an associated buffer build a local vir-
tual circuit.

These structures are the basis for a efficient implementation of the 1PC
primitives.

6.2. Datagrams

Sending a datagram to a socket involves allocating the space needed in the
socket for a header describing the message (sender and length) and copying the
data into the associated bufler space. The operation is simple and fast, and
receiving a datagram is equally simple.

6.3. Virtual Circuits

Sending data to a virtual circuit in the single machine case is similar to
sending data to a datagram socket, except that when record mode is not in
effect no record boundaries are created. The urgent data operation is sup-
ported by having urgent markers in the socket data structure much as they are
kept by the TCP finite state machine [Postel 80c] [Gurwitz 81}.

6.4. Select statement

The select statement begins by examining each of the sockets in the argu-
ment bit masks. If none of these sockets is ready, then the kernel marks each
socket to show that it is being watched. When such a socket is ready for an
operation to take place the waiting process is awakenad, and continues by
returning a mask of sockets that are ready to be operated on.

By using counters it is possible to avoid any work looking at the sockets
waited on when the process reawakens (such as clearing out their state), and tc
avoid subtle wakeup-waiting problems. It is possible to arrange to examine each
socket exactly once for each call to selec!.

Timeouts on select can be implemented using the internal UNIX timeout
mechanism.

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

IPC architecture : -35- Implementation

8.5. Asynchronous and non-blocking i/o

Asynchronous notification of change in state on a socket is provided by
storing in each socket a pointer to the process that is interested in asynchro-
nous notification. This is possible because we allow only one such process for
each socket. When an event causing notification occurs, we send a signal to this
process.

Sockets flagged for non-blocking i/o return an error indication when a write
socket is full or a read socket empty, allowing the caller to continue.

6.6. Portals

A portal is implemented by a UNIX file of a special type. When a portal is
referenced, the system looks to see if a corresponding server is active. This is
easy, because if a server is active then the file will have an entry in the in-core
file information referencing the socket accessed by the server.

If there is an active server, then the new reference to the portal is
presented to it in the portal-protocol specified way. If there is no active server,
then one is created and then presented the new reference.

Translation of system calls and the interpretation of the server protocols in
the kernel is straightforward.

8.7. Associations

Associations between internetwork addresses and processes can be imple-
mented in several different ways. A simple implementation is to associate a
directory with such servers (say *'/assoc’’), and search it for files with specific
names when sockets are addressed that are not in use. This has the disadvan-
tage that the file system operations may be time consuming.

A plausible alternative is to have the files in that directory represent the
servers, but to have a kernel table rebuilt from that directory at boot.

Server creation for associations is straightforward.

8.8. Network interfacing

A goal of the IPC architecture was to easily interface the available networks.
We believe that interfaces to the ARPANET, networks based on X.25, and to local
area networks running either the TCP/IF eor PUP protocols will be straightfor-
ward. It should be possible to build the circuit and datagram primitives on
these networks in a network-transparent way, by translating the UNIX IPC virtual
circuits and datagrams into the local network protocol equivalents.

We have designed the IPC to be able to interface to non-UNIX applications
running on the internetwork. The transformation of the UNIX primitives into
those of the various internetworks is straightforward, with a few minor excep-
tions (such as the limited length of datagrams in X.25 networks.)

8.9. Performance of a prototype implernentation

The following sections compare the performance of different IPC facilities.
We first describe the measurement method and then present some measure-
ments.

CSRG TR/3 — Draft of June 22, 1981 — Joy/Faory

IPC architecture - 36 - Implementation

8.9.1. Measurement method

We wish to measure the overhead in sending messages using different IPC
facilities on a single machine, on a local network and over a long-haul network.
Currently available for measurement are traditional UNIX pipes, a single-
machine implementation of CMUs IPC [Rashid 80], and a prototype implementa-
tion of the IPC described here, which supports pipes and datagram services on a
single machine.* We are thus limited to single machine measurements.

System overheads from CPU rescheduling and system entry and exit affect
all the IPC mechanisms. In these first measurements we are attempting to fac-
tor out the effect of these overheads. We hope later to measure the degree to
which the different mechanisms can avoid these overheads.

To avoid introducing rescheduling time, we timed the mechanisms sending
messages through the IPC back to the originating process. Thus the basic test
loop consists of repeated message exchanges, represented in the pipe case by
writes and reads.

The program:
main(argc, argv)
char **argv;

¢

char buf[2048];
int i;
int len = 64;

int illegalfd = —1;
for (i = 10000; ——i > 0;) §
write(illegalfd, buf, len);
read(illegalfd, buf, len);
]
J

was run to determine the overhead implicit in the test program. It determined
that there was 440 usec of time spent in each for loop iteration, not attributable
to any internal mechanisms. With this knowledge, the foilowing program:

main(argc, argv)
char **argv;
¢
int len = atoi(argv[1]);
int pv{2]:
char buf[2048];
int i;
pipe(pv);
for (i = 10000; ——i > 0;) {
write(pv] 1], buf, len);
read(pv[0]. buf, len);
J
J

was run to gather mechanism timings. By subtracting 440 usec per loop from
the time accumulated by this second prograrn. we can delermine the amount of
time spent in a message send-receive pair.

* The UNIX mpz mechanism is not measured here, because o” problems that do not permit
sending of messages longer than 200 bytes. The iimes for mpz ere roughly equivelent to
those for traditional UNIX pipes.

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

IPC architecture -37- Implementation

6.9.2. Measurements .

For the measurements presented here we used a prototype implementation
of our IPC proposal, traditional UNIX pipes as implemented in the latest release
of the Berkeley VAX system, and numbers reported to us by Rashid for the CMU
IPC described in [Rashid 80).

Our IPC mechanism implements pipes as restricted virtual circuits, and the
numbers reported for our IPC use these pipes. As the datagram, circuit and
pipe facilities are nearly identical in implementation on a single machine, the
prototype numbers will not differ much from those that would be measured for
datagrams or circuits. For the CMU IPC we have derived numbers equivalent to
our test program from the data supplied by Rashid; we hope to run a program
similar to that above to obtain directly measured numbers soon.

The first measurement is of the numbers of messages that can be passed
per second under the three mechanisms in the current system:

messages per second to sel?

length | UCB proto CMUIPC old pipes
4 1234 400 588
256 1052 303 526
512 833 285 454
1024 526 222 357

From these measurements we can determine the internal overhead in the
IPC mechanisms. We first assume that reads and writes take the same amount
of time. We then take the time spent by the benchmark program, subtract the
time spent by the program that computed the overhead per iteration, and divide
by twice the iteration count to determine the overhead for a single read or
write:

1

usec per read or write

length | UCB proto CMU IPC old pipes |
4 185 1030 630 |
256 255 1430 730
512 380 1530 880
1024 730 2030 1180 |

Finally, we can compute the rate at which the internal IPC mechanisms can
be executed, measured in exchanges per second. This is a limiting rate and can-
not be exceeded under any single-machine scenario. These numbers could be
approached by providing system primitives to: send and receive vectors of mes-
sages in a single system call:

max. possible exchanges per second

length | UCB proto CMUIPC old pipes |’
4 2702 485 793
256 1960 303 684
512 1315 285 568
1024 684 222 423

In the current incarnation, the prototype UCB IPC mechanism is
significantly faster than old pipes. which are faster than the CMU IPC

CSRG TR/3 - Draft of June 22, 1881 — Joy/Fabry

IPC architecture -38 - Implementation

mechanism.

Source and object code size comparisons for the different mechanisms are
given in the following table. We give two numbers for the proposed IPC: the size
of the current prototype implementation and an estimate of the size of the final
single-machine implementation when virtual circuit and portal support is added.
To obtain the size estimate we have assumed that that addition of circuit and
portal support will result in code 2 to 3 times as large as the prototype imple-
mentation.

1PC source object
facility lines bytes

old pipes 230 800
UCB proto 689 2100
mpx 1800 6032
UCB IPC (est) 1700 5250
CMU 4107 12840

We have included the size of the current UNIX mpz facility in our figures.
The IPC facilities proposed here will provide functionality equivalent to both mpzx
and pipes so that it will be possible to replace these facilities with the new 1PC.
We thus believe that a systemn with our new IPC will not be substantially larger
than the current system, as the older support for these facilities can be
removed.

We hope to make further tests of these mechanisms soon and report
numbers for both inter-machine implementations using TCP/IP protocols and a
full single-machine implementation soon.

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

IPC architecture -39 - Conclusions

7. Conclusions

We believe that the IPC design specified here meets the needs of a wide
variety of UNIX uses and the goals we outlined for it in section 2. Specifically:

* The IPC primitives are fast in the single machine case, supporting multipro-
cess applications that require rapid and low overhead message passing.

* The design matches closely the facilities of available networks and will be
usable with a internetwork containing heterogeneous network protocols.

* The portal facility makes it easy to make internetwork resources available
to processes in the UNIX name space. The association facility makes it easy
to make local resources available to remote processes.

* The autonomy of local nodes is supported by the restriction of access to
portals to machines on the local node. External access through associa-
tions and internetwork addresses are subject to higher level authentication
procedures in the communicating server processes.

We believe that our IPC will be applicable to applications areas we have not
foreseen. Its applicability is enhanced by extensibility: new socket types can be
defined for specific applications with special semantics appropriate to those
applications; new portal types and protocols can be defined to extend the kinds
of resources available in the UNIX name space; conventions on addressing in the
internetwork can make special network resources such as broadcast or multi-
cast hardware available.

We believe that the IPC will be simple to build and efficient enough for the
most demanding applications. It should be possible to build IPC support for C
programs on other UNIX and non-UNIX processors, even oOnes with limited
address space.

We hope that other TPC facilities will be built for UNIX, both as layers atop
our IPC and extending or providing replacements for layers that we have
defined. In particular, at the IPC kernel layer, connectionless message-response
protocols and multicast protocols deserve further investigation. Standard pro-
tocols for external data representation merit and are receiving much attention.
To foster experimentation with these and cther areas we have made a conscious
effort to keep the proposed extensions simple, providing bases for facilities that
seem worthy of further investigation instead of than building in a single, unsatis-
fying attempt at an answer. Several interesting experiments with additional
facilities and protocols can be tried simply, and we are planning such experi-
ments in the near future.

Acknowledgments

We would like to thank the members of the IPC working group at Berkeley
for their help in discussions that led to the present proposal. Ken Birman and
Michael Powell presented proposals to this working group that help us in the for--
mative phases. Raphael Alonso, Eric Cooper, Doug Terry and David Ungar pro-
vided constructive criticism. Rob Gurwitz of BBN helped by carefully describing
their approach to interfacing a TCP/IP implementation to UNIX, and also pro-
vided comments on early drafts of this paper. Rick Rashid of CMU provided
benchmark programs and measurements used in preparing section 6.9.

CSRG TR/3 — Draft of June 22, 1981 — Joy/Fabry

IPC architecture

References
[Abraham 80}

[Ball 78]
[Baskett 77]

[Belsnes 76]

[Boggs 79]
[Cerf 74]

[Chaum 78]

[Chesson 79]
[Clark 80]

[Donnelley 79]
[Feldman 79]

[Finn 79]

[Fletcher 80]

[Folts 80]
[Gurwitz B1]

[Haverty 78]

[Herlihy 80}

CSRG TR/3

- 40 - References

Abraham, S.M. and Y.K. Dalal. Techniques for Decentralized
Management of Distributed Systems. Proc. Spring COMPCON
1980. San Francisco, Ca. 430-437.

Ball, E., J. Feldman, W. Low, R. Rashid and P. Rovner. RIG,
Rochesters intelligent gateway: system overview. JEEE
Trans. on Software Engineering SE-2,4 (Dec. 1976) 321-328.

Baskett, F., J.H. Howard and J.T. Montague. Task Communica-
tion in DEMOS. Proc Sizth ACH Symposium on Operating Sys-
temns Principles. Nov. 1977, 23-31.

Belsnes, D. Single-Message Communication. /EEE Transac-
tions on Communication COM-24(2), Feb. 1976, 190-194.

Boggs. D. R., J. F. Shoch, E. A. Taft, and R. M. Metcalfe. Pup:
An Internetwork Architecture. Report CSL-79-10, XEROX Palo
Alto Research Center, July 1979.

Cerf, V. and R. Kahn. A Protocol for Packet Network Intercon-
nection. JEEE Transactions on Communication. COM-22(5),
May 1974.

Chaum, D.L. and R.S. Fabry. Implementing Capability-Based
Protection Using Encryption. University of California, Berke-
ley, Electronics Research Laboratory, Memorandum UCB/ERL
M78, July 1978.

Chesson, G.L. Datakit Sofiware Architecture. C(onference
Record, International Conference on Communications. June,
1979, 20.2.1-20.2.5.

Clark, D.D. and L. Svobodova. Design of Distributed Systems
Supporting Local Autonomy. Proc. Spring COMPCON 1980.
San Francisco, Ca. 438-444.

Donnelley, J. Components of a Network Operating System.
Computer Networks. Vol. 3, 1973, 383-399.

Feldman, J.F. High Level Programming for Distributed Com-
puting. Comm. ACH 22(8), June 1979, 353-368.

Finn, S.G. Resynch Procedures and a Fail-Safe Network Pro-
tocol. IEEE Transactions on Communications COM-27(8),
840-845.

Fletcher, J.G. and R.W. Watson. Service Support in a Network
Operating System. Proc. Spring COMPCON 1980. 415-424.

Folts, H.C. X.25 Transaction-Oriented Features — Datagram
and Fast Select. JEEE Trcnsactions on Communicalions
COM-28(4), 1980, 496-500.

Gurwitz, RF. Vax-UNIX Networking Support Project — Imple-
mentation Description. Internetwork Working Group, IEN 168.
January, 1981.

Haverty, J., J. Davidson and R. Rettberg. A Standard for UNIX
Interprocess Communication. BBN Report #3948, Oct. 1978.

Herlihy, M.P. Transmitting Abstract Values in Messages.
Laboratory for Computer Science, Massachusetts Institute of
Technology. LCS TR-234, 1980.

-- Draft of June 22, 1981 — Joy/Fabry

&

IPC architecture

[Bwang 81a]

[Hwang B1b]

[Ichbiah 79]

[1SO 79]

[Kent 76]
[Kernighan 81]
[Kimbleton 76]

{Lampson 80]

[Lampson B1a]

[Lampson 81b]
[Lantz 80}

[Liskov 79]
[Lyons 80}

[McQuillan 78]

[Needham 78]

[Needham 79]

[Nelson 79]

CSRG TR/3

-41- References

Hwang, K., B.W. Wah, and F.A. Briggs. Engineering Computer
Network (ECN): A Hardwired Network of UNIX Computer Sys-
tems. Proc. AFIPS NCC 1981. Vol. 50, AFIPS Press, Chicago,
.

Hwang., K., B.W. Wah, F.A. Briggs, G.H. Goble, W.R. Simmons
and C.L. Coates. UNIX Networking and Load Balancing of
Multi-Minicomputers for Distributed Processing. Manuscript,
Electrical Engineering Department, Purdue University, W.
Lafayette, In. April 1881

Ichbiah, J.D., J.G.P. Barnes, J.C. Heliard, B. Krieg-Brueckner,
0. Roubine, B.A. Wichmann. Rationale for the Design of the
Ada Programming Language. Sigplan Notices 14(6), June
1979, Part B.

International Organization for Standardization. Reference
Model of Open Systems Interconnection, 1SO/TC97/SC16
N227. Aug. 1979.

Kent, S.T. Encryption-Based Protection Mechanisms for
Interactive User-Computer Communication. Laboratory for
Computer Science, Massachusetts Institute of Technology.
MIT/LCS/TR-162, May 1976.

Kernighan, B.W. and J.R. Mashey The Unix Programming
Environment. Computer 14(4), 1981, 12-24.

Kimbleton, S.R. and R.L. Mandell. A Perspective on network
operating systems. Proc. AFIPS NCC, 197€. 551-559.

Lampson, B.W. and D.D. Reddell. Experience with processes
and monitors in Mesa. Comm. ACM. 23(2), Feb. 1880, 105-117.

Lampson, B.W., editor. Distributed Systems Architecture and
Implementation: An Advanced Course. Springer-Verlag, New
York. To appear, 1981.

Lampson, B.W. Remote Procedure Calls. In [Lampson Bla].

Lantz, K. Uniform Interfaces For Distributed Systems. TRE3,
Department of Computer Science, University of Rochester.
Rochester, NY. May, 1980.

Liskov, B. Primitives for Distributed Computing. Proc.
Seventh Symposium on Operating Systems Principles. Dec.
1979, Pacific Grove, Ca. 33-42.

Lyons, RE. A Total AUTODIN System Architecture. IEEE
Transactions on Communications. COM-28(9), 1980, 1467-
1481.

McQuillan, J.M. Enhanced Message Addressing Capabilities for
Computer Networks. Proc. IEEE 68(11), 1517-1526.

Needham, R.M. and M.D. Schroeder. Using Encryption for
Authentication in Large Networks of Computers. Comm. ACH.
21(12), Dec. 1978, 993-998.

Needham, R. Adding Capability Access to Conventional File
Servers. Operating Systems Review 13(1), Jan. 1879, 3-4.

Nelson, J. Implementations of Encryption in an “Open Sys-
tems” Architecture. Proceedings cf t’.e Computer Network-
ing Symposium, 1975, 188-205.

- Draft of June 22, 1981 — Joy/Fabry

IPC architecture

[Nelson 80]

[Osterweil 81]

[Popek 79]

[Popek 81]

[Postel 80a]
[Postel 80b]
[Postel BOc]
[Pouzin 76]
[Powell 81]

[Rashid 80]

[Rashid B1]

[Redell 79]

[Rowe 81]

[Rybczynski 80]

[Saltzer 78]
[Shoch 78a])

[Shoch 78b]

[Sincoskie 80]

CSRG TR/3

-42 - References

Nelson, B. Remote Procedure Call: A Thesis Proposal. Depart-
ment of Computer Science, Carnegie-Mellon University. April,
1980.

Osterweil, L. Software Environment Research: Directions for
the Next Five Years. Computer 14(4), 1981, 35-43.

Popek, G.J. and C.S. Kline. Encryption and Secure Computer
Networks. Computing Surveys 11(4), Dec. 1979. 331-356.

Popek. G., B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin,
G. Thiel. LOCUS: A Network Transparent, High Reliability Dis-
tributed System. Draft paper dated January 22, 1981. Com-
puter Science Department, UCLA.

Postel, J. Internetwork Protocol Approaches. /EEE Transac-
tions on Communications COM-28(4), 1980, 604-611.

Postel, J. DoD Standard Internet Protocol, RFC 760, IEN 128.
USC Information Sciences Institute, Jan. 1980.

Postel, J. DoD Standard Transmission Control Protocol, RFC
761, 1EN 129. USC Information Sciences Institute, Jan. 1980.

Pouzin, L. Virtual circuits vs. datagrams — Technical and pol-
itical problems. Proc. AFIPS NCC 1976. 483-494.

Powell, M. Laissez Faire Naming for Distributed Systems.
Computer Science, U.C. Berkeley. Submitted for Publication.

Rashid, R.F. An Inter-Process Communication Facility for
UNIX. Department of Computer Science, Carnegie-Mellon
University. Feb. 1980.

Rashid, RF. and G.G. Robertson. Accent: A communications
oriented network operating system kernel. Department of
Computer Science, Carnegie-Mellon University, April, 1981.

Redell, D.D., Y.K. Dalal, T.R. Horsley, HE.C. Lauer, Ww.C. Lynch,
P.R. McJones, H.G. Murray, S.C. Purcell. Pilot: An operating
system for a personal computer. Comm. ACHM 23(2), Feb.
1980, 81-92.

Rowe, L.A. and K.P. Birman. A Local Network based on the
UNIX Operating System. To appear: IEFE Tronsactions on
Software Engineering 1981.

Rybezynski, A X.25 Interface and End-to-End Virtual Circuit
Service Characteristics. JEEE Transactions on Communica-
tions COM-28(4), 1980, 500-510.

Saltzer, J. Naming and Binding of Objects. In Operating Sys-
tems: An Advanced Course. Springer-Verlag, New York, 1978.

Shoch, J. Inter-Network Naming, Addressing and Routing.
Proc. Fall COMPCON 1978. 12-79.

Shoch, J. Inter-Network Fragmentation and the TCP. Proc.
Third Berkeley Workshop on Distributed Data Management
and Computer Networks Aug, 1978, 161-168.

Sincoskie, W.D. and D.J. Farber. SODS/OS: A Distributed
Operating System for the 1BM SERIES/1. Operating Systems
Review 14(3), July, 198C, 46-54.

-- Draft of June 22, 1981 — Joy/Fabry

*

IPC architecture

[Sloan 79]

[Solomon 78]

[Sproul 78]

[Sturgis 80]

[Svobodova 79]

[Swinehart 79]

[Thompson 78]
[Voydock 80]
[Ward 80]

[Watson 80a]

[Watson 80b]

[Watson 81a]

[Watson 81b]

[White 76)

[Zimmerman 80]

CSRG TR/3

-43 - References

Sioan, L.J. Limiting the Lifetime of Packets in Computer Net-
works. Computer Networks Vol. 3, 435-445.

Solomon, M.H., and RA. Finkel. The Roscoe Distributed
Operating System. Proc. Seventh Symposium on Operating
Systems Principles Dec. 1879, 106-114.

Sproull, RF. High-Level Protocols. Proc. JEEE 86(11). Nov.
1978, 1371-1386.

Sturgis, H., J. Mitchell and J. Israel Issues in the Design and
Use of a Distributed File System. Operating Systems Review
14(3), July 1980, 55-68.

Svobodova, L., B. Liskov and D. Clark. Distributed Computer
Systems: Structure and Semantics. Laboratory for Computer
Science, Massachusetts Institute of Technology.

MIT/LCS/TR-215, March, 1979.

Swinehart, D., McDaniel, G., Boggs., D. WFS: A Simple Shared
File System for a Distributed Environment. Operating Sys-
tems Review 13(5), Dec. 1979, 8-17.

Thompson, K. UNX Tyne-Sharing System: UNX Implementa-
tion. Bell Sys. Tech. J. 57(6), 1931-1948.

Voydock, V.L. Features of Network Interprocess Communica-
tion Protocols. BBN Report 4489. September, 1980.

Ward, S.A. Trix: A Network-Oriented Operating System. Proc.
Spring COMPCON 1980. 344-349.

Watson, R.W. and J.G. Fletcher. An Architecture for Support
of Network Operating System Services. Computer Networks
Vol 4, 33-49.

Watson, RW. Network Architecture Design for Back-End
Storage Networks. /EEE Computer Feb. 1880, 32-48.

Watson, R.W. Distributed system architecture model. In Dis-
tributed Systems: Architecture end Implementation: An
Advanced Course. B. W. Lampson, ed. Springer-Verlag, New
York. To appear, 1981.

Watson, RW. ldentifers (naming) in distributed systems. In
Distributed Systems: Architecture and Implementation: An
Advanced Course. B. W. Lampson, ed. Springer-Verlag, New
York. To appear, 1981

White, J.E. A high-level framework for network-based
resource sharing. Proc. AFIPS NCC 1975. 561-570.
Zimmerman, H. OSI Reference Mocel — The 1SO Model of
Architecture for Oper Systems Interconnection. IEEE Tran-
sactions on Communications COM-25{4), 1980, 425-432.

— Draft of June 22, 1981 — Joy/Fabry

. S

IPC architecture - 44 - Layered models

Appendix A: Layered models

This appendix gives short summaries of the various layered models men-
tioned in section 2.1.

A 1. Arpanet protocols: the IP family

IP is a datagram protocol for use in interconnected networks [Cerf 74]
[Postel 80b] [Postel 80c]. It interfaces to local networks with a local network
protocol, and the local networks interconnect through gateways, which are hosts
on two or more networks. On top of this internetwork datagram model the
Transmission Control Protocol (TCP) provides a logical connection service. At
higher levels are function oriented protocols such as the File Transfer Protocol,
FTP. These levels are summarized in the following table:

level Protocols
Application FTP, TELNET ...
Connection TCP, RTP, ...
Internetwork 1P

Local network LNPs

The internetwork protocols are used in the Arpanet, in the military Autodin 11
[Lyons 80], and in commercial local area networks and network front ends.

A 2. Xerox Pup Architecture

The Pup Internetwork Architecture [Boggs 79] provides a common packet
format for communication and at least 5 levels of protocols. The levels are:

Applications

Data structure/process interaction
IPC primitives and protocols
Internetwork datagrams

Packet transport mechanisms

O NWs

Pup builds on a level of packet transporters, such as the Ethernet or packet
radio at level 0. At level 1is a internetwork datagram facility, described by a
packet format, a hierarchical addressing scheme and an internetwork routing
algorithm. This level in the scheme has only on= implementation and unifies all
possible implementation at the other levels. Level 2 absiracts IPC mechanisms
and protocols. Level 3 adds structure to the data moved at level 2 and also
specifies interaction between processes. this leve! consisis of functicn-oriented
protocols. Above level 3 are individua! application protccols, end further levels
may be defined by the applications themselves.

A 3. ISO Open Systems Mode!

The 1SO Open Systems Interconnection Model! [1S0 7¢] [Zimmerman 79] con-
sists of seven layers. The layers are numberec from 1 to 7, with the hardware
facilities at level 1 the applications facilities at level 7. The levels are:

CSRG TR/3 -- Draft of June 22, 1981 — Joy/Fabry

IPC architecture -45- Layered modets

Application
Presentation
Session
Transport
Network
Link
Physical

=Wk

The application layer provides the facilities for the information processing
activities such as file and facilities access. The presentation layer supports the
applications by providing information transformations such as those required to
account for heterogeneous machines. The session layer supports the dialogue
between processes by providing facilities for information exchange. The tran-
sport layer provides end-to-end control by providing a network independent
interface to transport services users. The network layer provides the functions
for intra-network operations such as addressing and routing. The link layer pro-
vides for the reliable interchange of data between equipment connected at the
physical layer. The physical layer specifies the physical, electrical, functional
and procedural characteristics to connect, maintain and disconnect the physi-
cal circuits between equipment.

A 4. Network Operating System Model

A layered model for a network operating system has been constructed by
[Watson 81a). The model consists of four basic layers, building on a concept of
system objects:

1 Hardware/firmware
2 System kernel

3 System services

4 Applications

The hardware/firmware layer provided components such as processors
memories and terminals. The kernel layer provides for device multiplexing.
basic protection and security mechanisms and interprocess communication.
The system services layer provides resource allocation and multiplexing of
processes, memory and other primitives. The final layer is implemented by and
for applications.

CSRG TR/3 — Draft of June 22, 1981 — Joy/Fabry

