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1.0 Introduction

Numerous experimental protocols and software techniques have been developed in the lai few
years on A. G. Fraser’s experimental Datakit hardware at Murray Hill. Most of this document is
devoted to a detailed exposition of some of the protocols and interfaces that were implemehted.
Section 2 describes the device driver and low-level operating system interfaces. Sections 3.0 th ough
3.4 describe the low-level addressing, connection management, and maintenance facilities. Sections
3.5 and 3.6 discuss higher-level addressing and control mechanisms. Section 4 describes the mejsage
interfaces to the basic network servers that were built. Section 5 describes the experimental trailer
protocol for data transport. Section 6 describes the software library of network access routines that
implement the section 3 protocols. A permuted index of technical terms referenced to|page

numbers is included at the end. The remainder of this section will present underlying designi|con-
cepts.

1.1 Background Information

Datakit architecture was first described in the open literature by Chesson ! and Fraser ¥ and
more recently by Luderer, Che, and Marshall 3 and will not be considered in depth here. Fo
discussion it suffices to say that the system utilizes a packet-switching concept implement
hardware. A Datakit switch is a single circnit board in a chassis with printod circuit back
calicd a node. Other circuit boards plug into a node and perform functions such as interfaci
computers, terminals, and other nodes. All circuit boards that work in the Datakit node envi
ment are called modules. ‘

Each module may access up to 511 logical channels for transmitting and receiving on the back-
plane. All data travels first from modules to the switch. The switch contains a control mechanism
for routing this data based on channel number and module number of the sender; i.e. data ing
into the switch from any module/channel can be routed to any other module/channel in the node.
The translation from the sender’s module/channel number to a destination module/channel is! con-
trolled by a routing table in the control memory of the switch. Note that the switch merely operates
as directed by the control memory. The memory contents are the responsibility of network cantrol
software that sets up the routing tables in response to requests for service, i.e. data paths through a
switch.

! G. L. Chesson, "Datakit Software Architectuse”, Proc. ICC 79, June 1979, Boston Ma., pp.20.2.1-20.2.5.

2 A. G. Fraser, Datakit - A Modular Network for Synchronous and Asynchronous Traffic”, Proc. ICC 1979, June
979, Boston, Ma.,pp.20.1.1-20.1.3.

G. W. R. Luderer, H. Che, W. T. Marshall, "A Virtual Circuit Switch as the Basis for Distributed Systems”,
Proc. Seventh Data Communications Symposium, October 1981, Mexico City, Mexico, pp.164-178.
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The architecture is not limited to a single switch: frunk modules provide data paths between
different switches. This in turn provides the basis for network growth and adaptability. There is a
strong analogy between this architecture and the telephone system in that a Datakit node and its

related equipment corresponds to a telephone central office and a Datakit trunk corresponds to an
inter-office carrier system.

1.2 Network Access

As explained above, Datakit provides virtual circuit service at a primitive level as distinguished
from other network architectures that build virtual circuit service on top of a datagram layer. The
consequences of this design are that network nodes must be centrally controlled by ESS-like
software programs and a network user needs a virtual circvit to access any network service. It

should come as no great surprise that a fair amount of effort goes into the design of virtual circuit
control mechanisms for a network like Datakit.

There are at least two views of network access: that from the user or host computer software
where the network is used, and that of the network control software providing service. These may
be at odds with one another. In some designs it may be that keeping one part simple complicates
the other. The design of the software described here favors simplicity at the host software interface,
partly on the grounds that the best way to proliferate a network is to make it understandable and
partly in reaction to the overwhelming nature of conventional network access methods.

The user interface for metwork access is constrained to a single reguest/response message
handshake for all network services. The basis of the handshake is a message format called a diaglout
structure that defines a uniform syntax for all network control messages. The same protocol model
is used throughout: send a dialout structure to the network control software and wait for a response.
A prototype routine for obtaining a virtual circuit is displayed in section 3.8, and the interfaces to
some network access library routines are documented in section 6.

The dialout structure defined in section 3 is actually the result of four major iterations in
software. It may be of interest to note that one iteration was for a fundamental algorithm change in
setting up channels, another was for improvements in the logical addressing scheme, and the others
were solely to increase the message size.

1.3 Switching Control

Switching as a generic term in telephony refers to the mechanics of causing two telephones to
talk to one another. In a network like Datakit it refers to the mechanics of providing virtual cirenite
betweon nciwork addresses. The switching control documented in the rest of this paper centers
around a software process called the CMC, or common control program. The organization of the
CMC and related software borrows from the principles of modularity demonstrated by the hardware
design.

The Datakit hardware has the property that logically separate operations or functions are
implemented by physically separate hardware units to as great a degree as practical. Following this
guideline helps develop one’s understanding of the relations between various networking components
and also encourages one to have better reasons than mere convenience for combining functions into
a unit. The analogy with software architecture lies in the way that control functions are represented
by processes as discussed below.

The switching control job can be divided into distinct parts: (1) pathfinding, (2) plugboarding,
and (3) service management. Pathfinding denotes routing, low-level address translation (in the
sense of section 3.1.2), and any other operations related to the representation of virtual circuits in
the hardware. If we think of the packet switch as a plugboard and virtual circuits as patchcords,
then plugboarding denotes the relatively simple operation of maintaining the routing table memory
in the packet switch. Lastly the term service management refers to the higher-level aspects of pro-
viding network service. Examples include authentication mechanisms, terminal control, process
coordination, resource management, and various kinds of directory and name translation scrvices.
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The software for such things is fairly specialized - no two are alike. On the other hand the plug-
board and pathfinding functions are closely related and are needed by all the higher level fu ctions.
'.I'his is the basis of a functional argument for an architecture consisting of a simple low-level process,
In our case the CMC, that provides plugboard and pathfinding services for a group of higher-level
processes that in turn provide service management functions for the network users.

After the addressing structure has been designed for a network, the services provided by a
CMC need not change. Service management by contrast is where one expects to find the unex-
pected. New kinds of intelligent interfaces, software applications, and combinations of new and old
technologies emerge continuously, requiring adaptation on the part of service management sqftware
but not typically in the CMC part. This kind of evolution is a phenomenon observed in telef hony,
but it happens at an even greater rate in computer networking. If there is anything at al] to be
learned from past experience with ESS software it is that the memory, cpu, and complexity aspects
of evolving service offerings present non-trivial problems for the implementors and mainthiners.
The facts of life seem to be that service management software must evolve and that in doinjg
quickly reaches the limits of the small computers favored as control processors. The CMC [d
advocates placing different service management processes on different, perhaps dedicated, comjputers
so they ‘can evolve without affecting the memory or real-time properties of other processes. | Since
switching software would probably be partitioned into plugboard/pathfinder and manager functions
anyway, physical separation can be achieved by having communications between the CMt
other control processes travel over the network. '

As mentioned above the plugboard/pathfinder functions have been implemented as a p
called the common control, abbreviated CMC. This program implements the lo
requestiresponse handshakes for virtual circuit control in support of user programs and i
management processes, the latter simply called managers or manager processes. The CM G

can utilize the higher-level services.

1.4 Configuration and Addressing

equipment is-operating. This in turn allows maintenance and configuration operations to
without turning off the metwork and also means that the topology of the metwork can ¢hange
dynamically. One goal of the software has been to automatically track and accommodate to,
cal change. This led to a loose style of interaction between network control processes and hos
puters wherein host computers announce their presence to the network control software
then able to determine their physical addresses. In addition metwerk vontrol processes contin
execute a distributed spanning-tree algorithm to determine overall network connectivity, host|com-
puters inform the network when they are alive and the network acts accordingly.

designed into the network addressing mechanisms. The notion of having addressing and r
data in each host, exemplified by the ARPANET, uucp and many Ethernets, is difficult to redoncile
with the notion of adaptability. The approach that has been worked out here distinguishes be

above provide the information needed by the CMC to perform address translations.

1.5 Connection Management

The connection setup procedure was designed for speed and simplicity. It uses the mini
number of interprocess messages - one from caller to CMC, one from CMC to destination, a
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and path setup algorithms, and for error control of channel setup messages.

The external request/response interface to the CMC implies that everything the CMC needs to
know in order to set up a new virtual circuit is contained in the request message. This means that
the CMC can be organized internally as a strict transaction-processing program where each message
read by the CMC is completely processed before the next message is read. This tends to make the
CMC a simple state machine program that can easily be multiplexed over the many channels and
processes that it serves. An example of this is given in section 3.8.2. Note that the CMC can be
constructed in this manner with some confidence because the manager process mechanism exists to
bandle more complex interactions that don't fit the request/response model,

The request messages sent to a CMC originate on channels selected by their senders. A CMC
takes these ‘requesting’ channels as the starting points of new virtual circuits and constructs paths
through the network to destination addresses. A Datakit network consisting of many packet switch-
ing nodes will probably have a CMC process for each node. This means that a virtual circuit
request may necd processing by more than one CMC before reaching its destination. This is accom-
plished by having each CMC set up as much of a new virtual circuit as it can and then pass the
request message on to the next CMC which either finishes the job or passes it along to yet another
CMC. The details of this procedure are given in section 3.2.4 and need not be repeated here. The
design concepts are these: (1) there is no essential difference in handling incoming service requests
by a CMC whether the messages come from a user process or another CMC, (2) a user process sees
the same request/response handshake regardless of the number of control programs participating in
connection management, and (3) the distributed spanning tree algorithm mentioned above provides
routing information needed to decide which CMC should continue a virtual circuit setup.

The three-message connection procedure is simple because there is no explicit error control.
Errors are corrected by starting over again while the connection take-down procedure carefully syn-
chronizes the recovery of channels. If one of the connection setup messages is Jost because of a net-
work error, the setup attempt will fail. This kind of error is detected by a timeout in the caller,
who drops the failed connection and tries again. The act of dropping a connection means going
through the connection takedown procedures (see section 3.4) which do have error correction by
retransmission. This is not a disadvantage because the same kind of take-down procedures are
needed whether or not the connection setup is simplified. The advantages are that the omission of
explicit error control on each channe] setup message contributes to lower overall delay in setting up
virtual circuits, and the CMC software is simplified as well.

1.6 Network Evolution

One can distinguish at least three phases in the evolution of distributed systems. The initial
software provides communication between time-sharing computers. These machines are typically
equipped with file storage, terminal ports, and tape facilities and operate quite nicely without a net-
work. The next step produces systems that depend on the network in a number of ways but which
can still operate in a standalone manner if necessary. In the third phase computers without terminal
ports or mass storage are connected to the net. This kind of architecture approaches as a limit the
concept of a processor-per-process operating system.

The present state of the art seems to be closer to phase two than phase three. The so-called
third phase network is a goal that seems to be shared among many active researchers in the area.
The remainder of this document describes the techniques that have been worked out in anticipation
of reaching that goal.
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2. DK Device Driver

2.0 General

The Datakit hardware presents 512 logical channels to a cpu. Channel 0 is reserved for
hardware status reports and should not be used by a cpu. The switch hardware uses a masking tech-
nique to bound the number of available channels on each interface, meaning that a driver thould
expect to handle some number of channels that is a power of 2.

The network control software arranges for the highest even channel on each host interface
module to be a virtual circuit to itself, i.e. looped-back channel. The physical number for this chan-
nel will be 2°-2 where 27 represents the total number of channels available to the module. B¢
of the channel-masking property of the switch any data sent on channel 510 will actually go but on
the loopback channel and return on it. This facility can be used for diagnostics, or to dets
how many channels are available. It is also arranged that the highest channel on each host|inter-
face, i.e. channel 2"-1, is mapped to an empty network address. This channel can be used to
the initial output interrupt needed by some device drivers.

Although there will be exceptions to the rule, most network interface devices and device
drivers will be multiplexed — it is 2 general assumption that software needs to read and write {multi-
ple channels simultaneously. Also, the various protocols defined for Datakit depend on ¢
scanning, editing, and translation operations. Those operations that are best done in a device
(or device) are described here as channel modes. Examples include whether or not to echo incom-
ing data, or to add additional information to incoming or outgoing packets. The driver on a
user system must provide a method for dynamically setting and changing modes on a per-
basis.

On Unix the directory /dev/dk contains a special file for each Datakit channel supported |t
driver. File names are of the form /devidk/dkxx where xx starts at O1. If a user program oper
of these files, the operating system returns a file descriptor, usually abbreviated as fd in this
ment, that may be used in subsequent i/o calls. Read or write system calls on file /devidk
affect Datakit channel 1, /dev/dk/dk02 maps to Datakit channel 2, etc.

2.1 Framing and Control

Data transmission through the switch is in packets, sometimes called hardware pac
chunks to avoid confusion with higher-level message abstractions. Each packet consists of
channel number followed by 16 9-bit data bytes. User data is passed through the network as a

2{s Or
4 9-bit

8-bit field is non-null, then the data byte is a control or meta character.

A control packet concept, distinguished from that of data packer, has been used in sevetal pro-
tocol implementations. A control packet is defined as a single hardware packet where the first byte
of the packet is a control character. Since data is received from the network one 16-byte packet at
a time, there is only a small amount of software overhead involved in checking the first byte to see
whether the whole packet should be treated as data or control information.

A more general definition of control packet would permit a control character to appeat any-
where within a hardware packet and might also permit the bytes following the control charac

every byte must be examined and messages may have to be assembled from muitiple packets.
scanning is easy but time-consuming. Message assembly is time-consuming if data must be| o
and is usually difficult to implement correctly.

The simple but restricted control packet definition looks attractive for scveral reasons,
the disadvantage of depending on explicit knowledge of the 16-byte hardware packet size. The i

lowing: (1) new Datakit devices and internet connections may fragment packets and in
bytes, thus hiding the original packet boundaries and foiling the simple control packet alg\ i
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and (2) the 16-byte packet size sets an uncomfortably low limit for some protocols.

It is interesting to note that programmers working with Datakit hardware have all chosen a
§imgle contro! packet format for short term improvements in efficiency. Experience with the result-
ing implementations has shown that software overheads are prohibitive for applications other than
small-scale terminal processing. In other words the short term efficiency improvements gained by
the simple control packet format are negligible compared with the demands of remote file access or
bulk file transfer applications. In light of this it seems better to use the more general techniques,

even though some performance may be given up, and to rely on hardware front-ends and other
improvements for performance when needed.

2.2 Joct! Calls

Special functions and modes in device drivers are usually accessed on Unix via the ioct! system
call. Although this method is not the only possible one, the functions that were implemented will
be described bere in terms of ioct! calls. It is assumed that these operations can be mapped into
stty/gtty, fcntl, or other primitives on systems that don’t use ioctl,

The following paragraphs describe various ioctl calls used with Datakit. The arguments to
ioct] are & Unix file descriptor for a Datakit channel, ioctl code, and address of a formal parameter. °
The ioctl codes are defined in /usr/include/sgity.h on Unix and have the prefix DIOC. Those calls |
not requiring a third argument show a — in that position. In all the calls where the third argument
is a channel number, usually designated by the letter x, the variable is meant to be a 16-bit integer.

2.2.0 Cali Mode

The common control program (CMC) for the network sets up the Datakit switch so that mes-
sages sent from a host on an idle channel will go to the CMC. Al of the idle channels on each host
are mapped to the same channel at the CMC. When a message is sent on one of these channels,
the CMC must determine which channel the message represents. Obviously a channel number must
appear in such messages.

The format of CMC control messages (section 3.1) was designed so that the channel number
appears as the first item. A device driver can affix channel numbers to the beginning of output
messages — a channel being operated in this manner is said to be in call mode.

joctl(fd,DIOCSCALL,-) turns on call mode for the channel represented by file descriptor fd.
In this mode every packet sent on the channel is preceded by two extra 9-bit bytes placed there by
the driver. In the current definition of call mode these two bytes are simply the channel number,
low-order byte first. Note that call mode is turned on automatically when the channel selection
mechanism in the driver is used (see section 2.3). '

foctl(fd,DIOCRCALL,-) turns off call mode on the channel represented by fd.

It is worth noting that the format of CMC messages does not imply that there be a call mode
implemented in the device driver. All that is required is that the channel numbers in messages be
accurate. If the channel number in a network control message is correct but the rest of the message
is nonsense, the only adverse effects will be on the program sending the message. If the channel
number is wrong as well, it may represent an active channel, and some otherwise correctly running
program may be affected. This kind of reasoning lcads to having call mode or an equivalent in the
device driver or operating system where it can be insulated from malfunctioning user programs.

2.2.1 Listener Calls

The connection management protocols in section 3 are defined between three entities: a user
process, the network common control, or CMC, process, and an entity called the listener at each
destination network address. The listener abstraction can be implemented as a single process as wa
done on Unix, or it could be done in other ways. The driver controls listed in this section were proj
vided for the specific support of the Unix listener process.

foctl(fd,DIOGCLSTN,-) tells the driver that the channel represented by fd is to be the listene;
channel for the host (sc¢ section 3). DIOCLSTN puts channel /4 in call mode for sending message

!
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to the CMC and conditions the driver to send a timeout message to the listener every 15 nds.
The syntax of a timeout message is (T_LOC, D_TIMER)[-] using the notation introduced in section
3.1.1. I ichan mode is turned on (see next section), channel numbers are included with received
messages. Timer messages and other communications from the device driver are made to appear on
channel -1. If the listener process stops executing, the driver clears an internal flag that n ally

indicates which channel the listener is using. The driver inhibits outgoing channel setups (see [2.3) if
a listener is not present.

joctl(fd, DIOCICHAN,:) causes the driver to insert an 8-bit channel number and 8-bit length
before each object delivered to the io stream represented by fd. This lets a program disti guish
between data on different channels (see DIOCMERGE below), recognize messages generated by
the driver, and correctly parse variable-length messages in a byte stream.

locti(fd,DIOCPGRP,-) makes the current process the head of a process group and chapnel fd
on Datakit the control typewriter for that group. The control typewriter mechanism in Unfx pro-
vides for the sending of asynchronous signals, such as HANGUP, to a group of processes.

joctl(fd,DIOCRESET,&x) flushes all buffered data on channel x and sends a unix signa].
operation varies when the value of x is negative, zero, or positive. If x is positive, a hangup signal is
sent to the process group for channel x. If x is zero any processes (other than the listener) are ter-
minated with extreme prejudice — i.e. the Unix SIGKILL signal is sent to each one. If x i§ nega-
tive, data is flushed for channel -x and SIGKILL is sent instead of SIGHUP. The process using

x is zero, DIOCRESET sets a driver-internal state (DKLINGR) which prevents channel reu
DIOCLOSE is issued for the channel. :

joctl(fd,DIOCLOSE,&x) clears internal driver states and modes for channel x in
DKLINGR.

foctl(fd,DIOCLOOP,&m) sends the message m to a local channel. The channel nu
determined by the first 16-bits of m. The remainder of m is copied to the designated channel.
listener uses this facility to pass error and other messages received from the cMcC to local pr

2.2.2 CMC Calls

as a2 Unix process.

foctl(fd,DIOCMPX,-) turns on user-multiplexing mode: the first 16-bits of each write opera-
tion to the driver are interpreted as the hardware channel to send data on.

ioctl(fd, DIOCNMPX,-) turns off multiplexing mode.

ioctl(fd,DIOCMD,-) causes output formatting as required for reading and writing a [Datakit
switch control memory.

jocti(fd,DIOCTIME,") turns on 15-sccond (T_LOC,D_TIMER) time ticks for the CMC ::ka chan-
nel -1 as described earlier for the listener. This call dates from the earliest implementations when
the CMC program ran on a machine that also had a listener.

2.2.3 Input Multiplexing

A primitive multiplexing ability exists in the Unix driver that lets a process receive data from
several channels by reading on a single file descriptor. This was provided mainly for expexj' enta-
tion with various network control processes on Unix.

foctl(fd, DIOCMERGE,x) instructs the driver to send all incoming data on channel ’#to file

descriptor fd. DIOCICHAN mode should be turned on in order to decode the incoming str
" foctl(fd, DIOCUMERGE,x) turns off the merging operation on channel x.
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2:.2.4 Other

These primitives permit user program manipulation of control packets and systems buffers.
They are described here for completeness only and have in fact been used primarily as diagnostic
and development facilities.

foctl(fd, DIOCBLOCK,-) conditions the driver to usc system buffers for i/o operations on the
indicated channel.

joctl(fd,DIOCSMETA, &message) sends the 16-byte message as a control packet. The driver
flushes all non-control buffers before sending message.

foctl(fd,DIOCXMETA, &byte) sends byte as a single control character.

2.3 Channel Zero

Since channel 0 is dedicated to hardware maintenance, the driver uses it for a special purpose:
a software open operation on channel zero is interpreted as a request to select and open an available
channel. The channel that is actually opened is placed in call mode with echo and other Unix type-
writer modes turned off (i.e. RAW mode). Channels that are in use or are in DKLINGR mode
arc bypassed in the scarch. This operation can be done very quickly in the driver at high priority
thus avoiding the race conditions and overhead inherent in other implementations.

Channel allocation rules, i.e. the definition of what constitutes an available channel, are
described in more detail in section 3.2.2. These rules may change from time to time, but we expect

to always have the current selection rule carried out as a side-effect of opening channel zero on the
driver.

2.4 DR11C Specimen Driver

The following explains the programming steps needed to operate the DR11C-based Datakit
interface. The style will be to present and explain fragments of C code that deal with the hardware.
The problem of integrating these operations into a driver and particular operating system are left to
the reader. The viewpoint of the text is that inpws implies data movement from network to com-
puter.

2.4.1 Hardware Description

A DRI1IC, or its Q-bus equivalent, provide a register interface to a Computer Port Module,
or CPM, that is inserted in the Datakit backplane. The device register layout is:

struct device {

short esr; /¢ control/status register o/
short d&ko; /+ putput register s/
short dki; /+ input register o/

| H

The Datakit CPM board may be thought of as an arrangement of three fifo’s: input, output,
and sequence. Software must load the low-order two bits of the DR11C csr register with values that
control which fifo is accessed when the software reads or writes dki and dko.

Packets from the network are copied directly to the hardware input fifo (256 bytes deep)
where they propagate to the top and can be read out via the input register dki. The output fifo (64
bytes deep) is loaded by writing to the DR 11C output register dko. The software must delimit pack-
cts in the output fifo by giving the hardware a transmit command at least every 16 bytes. Each
such command is accompanicd by a 4-bit sequence number. For each packet transmitted by the
hardware from the output fifo to the network, the associated sequence number is written to the
sequence fifo where it can be read back by the software.

Bit definitions used in accessing the csr register are:
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&#define DXTENAB 0100 /% enable output interrupts e/

#define DKRENAB 040 /¢ enable input interrupts s/
#define IENABS 0140 /% both interrupt enable bits &/
#define DKTDONE 0200 /+ transmitter done bit &/
f&efine DKRDONE 0100000 /¢ receiver done bit e/

#define D_OSEQ 0 /% read sequence fifo =/
#define D_READ 1 /% read input £ifo «/

#define D_WRITE 2 /% write output fifo a/

#define D_XPACK 3 /s transmit packet s/

The first five definitions are standard ones for a DR11C (see DEC manuals). The DKRDONE bit

is set by the hardware whenever there is a data byte to be read from the input fifo.
DKTDONE bit is set by the hardware whenever there is a value to be read from the sequen

The

cg fifo.

The hardware generates an interrupt through the input interrupt vector when both DKRENAB and
DKRDONE are set, and vectors through the output vector when DKTENAB and DKTDONE are

set. The last four values are commands that are loaded in csr.
Bit definitions used when accessing the dki and dko registers are:

fdefine DKMARK 01000 7/« marke beginning of packet &/
#define DKDATA 0400 /# bit 9 of data byte &/
#define DKPERR 0100000 /s input parity error s/

are deemed user data if DKDATA is set. They are deemed control information if non-n
DKDATA is not set. Zero bytes are null pads and may be discarded on input. The DKPE
should be ser for each input byte. A parity error is indicated if DKPERR is not set.

The first byte of a packet is marked with DKMARK and is interpreted as a channel number.ﬁlBytes

2.4.2 Interface Initialization
The following magic will clear all hardware fifo’s on the CPM board:

¢sz = D_OSEQ;
dko = 0;

It is prudent to test the sequence fifo after this initialization: if the DR11IC is not phy:
connected to the network or if the network is powered-down, the interface will deliver a bo.

and
R bit

ically
s and

infinite stream of data from the sequence and input fifo’s. It is important for a Datakit |device
driver to check for scemingly infinite junk coming from the two fifo’s to avoid crashing 4| host.

Code to perform this check for the sequence fifo is shown below. Since it is known t
sequence fifo is 64 bytes deep, it suffices to see if more than 64 bytes can be read from this

csr = D_OSEQ
for(i=64; i; i--)
1€ ((ceriDKTDONE)awd)
break;
if (i==p) {
printf("bad dk interface”);
return;

}

This test works because the sequence fifo is affected only by data traffic going to the netf:rk,

loop is emptying it. The input fifo is not similarly independent of network activity. A parti

and software can make certain that the sequence fifo is not being filled at the same time th?
tion to the input fifo problem is mentioned in the next section.
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2.4.3 Input Processing

As data enters the CPM board, softwarc can either receive an interrupt (by having set
DKRENAB) or loop while testing the DKRDONE bit. The contents of the input fifo will be a
stream of 16-byte packets each preceded by a channel number. The channel number bytes are
marked with the DKMARK bit. In order to read these bytes from dki, software must have first
loaded csr with the value D_READ. If the software is structured so that read routines call write
routines, it is important to make sure that the value D_READ in the csr is not changed when read-
ing commences anew. A specimen interrupt bandler for input is given below.

dkrint()

{

int chan, ¢, i, 3§, first;
int save;

char buf[16];

save = Qar; /% gave cor on entry +/
while (csr&DXKRDONE) {
scan:

C©ST = D_READ| IENABS /+ set up for reading «/

do { /% £ind packet header »/
chan = dki;
if (chani&DEKMARK)

break;
} while {(car&DKRDONE);
begin:

i€ ((curLDERDONE)==()
break; /8 no more data =/

if ((chan&DKPERR)==() /« parity error in header &/
goto scan;

chan &= 0777;

1f (chane=0) /+« error: channel zero «/
continue;

V4

« Copy out 16-byte packet for channel chan

o/

for (i=j=0; 1<16; d+¢) {

if ((cBr&DKRDONE)==0)/+ error: no data &/
goto out;

C = dki; /¢ get a byte «/

if {i=m0) /s zemember first byte «/
first = g3

if (cADKMARK) { /+ error: short packet «/
chan = ¢;
goto begin;

} .

i€ ((cLDRPERR)=n(0) /¢ parity exxoxr e/
goto scan;

if {{cB0777)==D) /s ignore NULL ¢/
continue;
buflj++) = ¢;
)
i€ (Jm=0) /+ empty packet &/

continue;
if (£irst&DRDATA)
pass_data(chan, buf, j); else
pass_cntl{chan, buf, j);
}
out:
CEX = pave /s reptoxe C8x o/

}
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.'l.'he error strategy in dkrint consists of throwing away bad data. The data/control acket
definitions of section 2.1 are applied, meaning that control packets are recognized by inspecti g the

first byte. Null bytes are discarded. Good packets are accordingly passed to cither a data packet
handler or control packet handler.

The code displayed above illustrates all of the error checks that should be applied to |input
bytes except for one. That involves checking for the infinite data problem mentioned in 2.4.2.| The
code segment given in 2.4.2 protects against continuous output interrupts, but not continuous input
interrupts. The input process can be guarded by prohibiting the use of channel 511 and counting
the number of packets arriving on that channel. If a sufficient number of packets arrive on channel
511 we decide the interface is out of order.

There are many ways of recoding the dkrint() routine given above. Note that on a|non-
cached processor it may be advantageous to unroll the copy loop.

2.4.4 Cutput Processing

In order to do output the software first loads D_WRITE into the csr register, then writ
desired output channel number or’d with DKMARK to dko, followed by at least 1 but not

chronous arrival of data, i.e. setting of DONE bits, the only safe method of programming the
face requires that interrupt enable bits be set and never changed while the driver is active, F
reason the csr manipulations in dkwrite show IENABS combined with every command. Also note
that the variable seg is used in the routine but not initialized. This is because software must
dko once after every D_XPACK command whether or not it intends to make use of the seqiience
fifo. Data in this extra write accompanies each packet through the output circuitry and is
into the sequence fifo when each packet is actually transmitted to the Datakit bus. The actual
Jloaded into the sequence fifo by this operation is the 4-bit field beginning at bit 10 of dko.
the code shown below would load the low-order 4 bits of seq into the sequence fifo.

dkwrite(chan, buf, cc)

char ebuf;
1nt i, seq;
/u
& Loop until eec bytes are transferred.
w;:IQ {cc) {

V4]
# Set up for output copy.
# Send channel number and calculate
« gize of next packet.
&/ ‘
c8r = D_WRITE!IENABS;
dko = chaniDEMARK;
i = min{cc, 16);
ce == i3

/e
&« Move data, preventing sign-extensiom.
« Mark as user data.

o/
while(i-~)
dko = (sbuf++ & 0377) | DKDATA;
V4
*+ Send the packet; load output seq number.
e/
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car = D_XPACK!IENABS;
ako = seg<<i0;

}

A software routine like dkwrite is not likely to execute the inner copy loop faster than once
per microsecond, i.e. no faster than Datakit can accept bytes. This means that such routines need
not worry about output fifo overruns.

On the other hand those software or firmware implementations that are capable of exceeding
the bandwidth of the network need to know when packets arc moved from the output fifo to the
network if fifo overruns are to be avoided. The only way to accomplish this with the DR 11C/CPM
interface depends on using the sequence fifo: the variable seq in dkwrite() can be loaded with
sequence numbers which when returned by the hardware indicate packet transmission. The
hardware algorithm propagates the seg values through the output circuitry along with the output
packets. When a packet is removed from the output fifo and copied to the Datakit bus, the associ-
ated seg variable is loaded into the sequence fifo. Output interrupts are caused by the arrival of a

scquence number at the top of the sequence fifo. These numbers may be read out of the sequence
fifo in an interrupt routine as shown below.

ékxint()
{

int save, seq;

/e

& Preserve contents of csr, load with OSEQ command.
e/

save = CBT;

cBr = D_OSEQ!IENABS;

/7

# Unload seguence numbers.
«/
while(csrADKTDONE) {

seq = (dki»>10)&017;

}

/a

& restore csr.

-/

CSr = Bave;

}

Note that the while statement in the above constitutes a potential endless loop. There should
be a limiting mechanism for this loop in a production driver along the lines of those discussed in
2.4.2and 2.4.3.

2.4.5 Observations

The 16-bit paralle]l interface to host computers was selected to simplify the construction of
experimental hardware. This was a wise choice - Datakit was put on the air using off-the-shelf host
interfaces. Other consequences of the CPM board and DR11C combination are enumerated below.

A computer would have to deliver a 1-megabyte/second stream in order to overrun the output
hardware fifo. It is belicved that the software-controlled algorithm given above cannot induce this |
phenomenon when run on a minicomputer. Oscilloscope timings have shown that a slightly optim-
ized version of the copy loop given above will move a byte approximately every 10 microseconds
when executed on a cache-cquipped PDP 11/45. The setup code that must be executed between 16
byte bursts introduces additional overhead.

The major performance bottleneck on the current DR11C interface is caused by the inability
to move more than 16 bytes through the interface before having to observe a begin-packet or end-
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packet protocol with the CPM board and other software components. In other words the

with the amount of scanning required to check the incoming byte stream plus the overhead
by having to demultiplex the interleaved input packet stream. The third performance-affe

perty of the CPM board is the size (256 bytes) of the input fifo: long messages are not practi
slow or heavily loaded hosts can experience fifo overruns.

The DR11C forces a half-duplex discipline in accessing the fifo’s on the CPM boa
causes minor irritations in a software driver and induces a small processing overhead.

The lack of electrical isolation between DR11C and CPM board plus the bad e
Datakit power-off conditions on the DR11C are problems we can live with in a research lab
not be ignored in new designs. The problems are caused by the DEC DR11C and seer
avoidable only by modifying or replacing it.

Experience with the DR 11C/CPM combination has been that the architecture provides
venient abstraction of virtual circuits and is exceptionally easy to program, especially whe

pared with other network and communications hardware. The various components of i/o
mance have been easy to observe because the interface is simple, and the knowledge gained
butes to new designs that will improve performance without perturbing hardware costs very

2.9
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3. Network Control

3.0 Overview

.A full-duplex end-to-end data path between a pair of objects in Datakit is referred to as a vir-
tual circuit. The following processes participate in managing virtual circuits: '
1) CMC - the common control program; each CMC in the network is identified by an exchange
number; )
2)L - the listener program, or datakit server, which runs on each computer; each listener is

identified by a number referred to as a logical address, logical host number, or
sometimes local address,

3)U - & user program initiating a request for a virtual circuit on some computer in the net-
work;

4) DK - the datakit device driver; _
5) MGR - a manager process responsible for some network resource or service.

Protocols are defined for the pairs of processes U/ICMC, CMC/L, CMC/MGR, DK/L and
CMC/CMC. The protocols for virtual circuit maintenance are command/response exchanges. That
is, one process sends a2 command to another process and expects a response within a certain amount
of time - typically 15 seconds. Commands are differentiated as to whether an incorrect or missing
response is fatal or whether a command should be retried until it succeeds. In general commands

for setting up connections may not be retried without first closing the channel, whereas commands
for closing a channel are to be repeated until a proper response is received.

3.1 Formats and Conventions

3.1.0 Data Representation

Unless otherwise noted bit zero and byte zero are the least significant elements in whatever
context they appear. Serial transmission of message structures is in increasing order of significance
starting with byte zero. This means that messages are copied to the network in the same way the
human reader scans this text: left-to-right and top-to-bottom. A pair of subroutines that convert
between the canonical, or network transmission, representation and the local data representation of
a machine are described in section 8. An explicit example of a C message structure and its canoni-
cal byte representation is given in section 3.1.1 below.

3.1.1 Message Formats

All message structurcs and related definitions are in /usr/include/dk.h, and are accessed by the
cmc program and routines that talk to the cmc with the line #include <dk.h>. AIll messages are
based on the dialout structure:

struct dialout {
char type;
char srv;
short param(;
shoxrt param1;
short param2;
short param3;
ghort paramd;
short param$;

I H

The representation of C structures in memory tends to differ between computers and C com-
pilers. Section 3.1.0 defines how messages arc to be formatted for transmission. The diagram
below shows the transmission byte ordering for the dialous structure.
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type | mv | pO1 | pO.h | p1.1 { pLb | p2.1 { p2.h | p3.1 | p3.h { p4.d | pd.h | 5.1 | pS.h

Transmission is from left to right; p0./ and p0.h denote the low and high bytes of paramQ. When

messages like the one above are sent in call mode (section 2.2.0) a channel number is requ%ed at

the beginning. This is normally put on by the device driver as depicted below where ch.! an
are the low and high-order bytes of the channel number that the message is sent on.

ch.h

ch.l J ch.h | type | wv | p0.] [ pO.h | pl.d | plh | p2.1 | p2.b | p3.0 | p3.h | pdd | pd.h | pS.I | pS.

The type and srv in a message structure determine the interpretation of the six 16-bit p

ame-

ters. The notation (type,srv)[p0,p1,p2,p3,p4,pS] will be used to describe messages. For example

(T.SRV,D_sH)|arex, host,-,~,~,-] denotes a message of fype T.SRV and srv D_SH with para

and

paraml indicating respectively an area code and host number. The dashes signify that the| other
parameters are not defined. Messages may also be denoted by the abbreviated form (type,srv) when
the parameters can be omitted from the discussion. Standard set notation, e.g. {a,b,c}, will denote

the set of entities a, b, and c.

The listener and common control program use DIOCICHAN mode (see 2.2.1). Thus méssages

read by the listener have the following form:
struct listenin {
char 1l_chan;
char 1l_size;
struct dialout 1_dial;
}s

In this structure I_chan and [_size are the extra bytes put on the message by the DIOCICHAN

the driver. The dialout structure will be received in canonical order as described above, m
that some conversion is needed when the Jocal representation of message structures is different
the canonical one.

All messages sent to the common control are formatted in call mode, so the CMC
records are as follows:

struct dialin {
char i_chan; /% local channel number «/
char i_size; /% message size #/
ghort i_rchan; /% remote channel number &/
struct dialout dial; '

}; :

e in
aning
from

input

machine sending to the CMC. Note that i_rchan is the manifestation of call mode on the machine

where i_chan and i_size are supplied by the CMC’s device driver and the rest comes t‘r(Til the

sending to the CMC. The notation <chan,size>(type,stv)[p0,p1,p2,p3,p4,p5] will be used in
cases where it is necessary to discuss dialin messages.

3.1.2 Network Addressing

Addressable objects in the network may be roughly categorized as either physical or
objects. The physical addresses of interest are either module numbers, i.e. backplane slot
where hardware modules are inserted, or node numbers, i.c. the identification of particular

within a cluster of switches controlled by a single CMC. Logical addresses refer to com,ﬁ ters,

CMC'’s, and other resources. Network addressing is based on a three-level hierarchy of
addressing. The terminology is as follows:
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a local address is a 16-bit number identifying a host computer or other resource;

an exchange code is an 8-bit number identifying a CMC process;
an area code is an 8-bit quantity identifying a geographic location, e.g. MH, IH, HO;

a network address consists of a host number, plus an exchange and area code.

An exchange and area code are usually combined as a 16-bit quantity, exchange as the low-
order byte, the whole referred to as an arex. When the value zero appears as any of the three com-
ponents of a network address it is always interpreted as the local or current exchange, area, or host.

The common control, or CMC, program maps network addresses to physical addresses. The
translation from other representations of system services or resources, such as system ‘names’, to
network addresses is to be carried out by other network processes.

3.1.3 Standard Reply Message

‘Almost all interactions with network control software are of the command/response variety: a
program sends a command and waits for a response. AIl responses are of the form
(T_REPLY x)[ch,err,-,-,-,-] where x is one of D_OPEN, D_ACK, D_WAIT, or D_FAIL. The OPEN response
is generally made for commands that create new virtual circuits, ACK is a general acknowledgement,
WAIT means wait, and FAIL means something went wrong. The value of param0 in T_REPLY mes-
sages sent by the CMC is always the channel number for which the message is intended. The param!
field accompanying WAIT specifies a number of seconds by which the requesting process should
lengthen any timeouts. For FAIL messages paraml is an error code and may be used to index the
array dkmsgs defined in /usr/include/dkerr.h.

3.1.4 Message Framing

All of the network control messages are designed to fit within a 16-byte Datakit packet. This
does not include any additional information that might be added by a receiving device driver. Thus
the control message framing is built on the 16-byte underlying packet structure provided by the net-
work hardware. All of the CMC and related network control software depends on having a one-to-
one relationship between hardware packets and software control messages.

The hardware-oriented message framing simplified the first generation design and implementa-
tions. The alternative would have been to implement a full-blown demultiplexing and error-
detecting protocol just to set up virtual circuits. This scemed like an inadvisable overhead when the
software was first put together even though the price paid for simple software was fixed size limits
on the messages.

The principal drawback of the binary formats described above is that it not possible to include
an arbitrary length string of bytes, e.g. a computer ‘name’, or file name, or executable string, as
part of a network control message. Such strings must first be converted to a 32-bit network address
as mentioned in section 3.1.2. Improved versions of Datakit software currently being implemented
use an error-correcting flow-control protocol similar to the trailer protocol described in section 5 of
this memo. When this software is in place on network control channels, the message structures can
be extended.

Given a variable-length control message containing one or more string variables, the transla-
tion of a string to a 32-bit network address can be modeled as part of the channe! setup protocol. If
a string were part of the channel setup message, the CMC could parse it to obtain a network
address. In a more ambitious setting one could imagine the network control protocols being entirely
ascii - no binary message formats at all. In this setting the contents of a service request message
would change as the message passed through network control processes on its path from source to
destination. Higher-level network services are more readily captured by this gradual string transla-
tion model than by protocols with multiple messages. However demonstrating this remains the pro-
vince of future software implementations.
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3.2 Standard Connection Setup Procedures

3.2.0 General

A connection, or virtual circuit, is a fun-duplex path through the network that connects
of cooperating processes. Before a new connection can be made there must exist a way

messages to the CMC (odd channels) and new connection setups {(even channels). .

A connection is created by the following sequence of events: (1) a process U obtains
channel; (2) U sends a service request message (T_SRV) to the CMC; (3) the CMC forwards

channel and a channel selected by the CMC on the destination machine; (4) the listener pri
on the destination machine processes incoming service requests, sending acknowledgement m
on the new channel to U (or to the CMC if requested). The three interprocess messages that
a virtual circuit are depicted below in Figure 3.2.1. These and other related messages are exami
in detail in the next few sections.

forwarded

(M TRV @) T_SRY

(3) TREPLY

Figure 3.2.1
There are three failure events for the message sequence depicted in Figure 3.2.1. The{ are:

loss of any of the three messages, rejection of the T.SRV message by either of the CMC or Li
and clapsed time alarm at the U process while waiting for T REPLY. The rejection ev

each channel is put into an ‘intermediate’ state while CMC and host software exchange hand
prior to declaring a channel ‘idle’ and available for reuse.

course of setting up and using virtual circuits. The connection protocols are described in te:
these abstractions, but it is important to note that the protocols are independent of the actual pro-
cess structure on a host computer. This means, for example, that the messages attributed to|the
Listener during channel takedown could be implemented in a device driver or in a front-end
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computer.

3.2.1 L/ICMC

Except for maintenance procedures, the CMC will not set up virtual circuits between a pair of
network addresses unless there is a listener or manager process running somewhere in the network
on behalf of each host. The reason for this is that at least one process per host is needed that will
take responsibility for synchronizing channel states with the CMC. A special case is defined for
single-user single-process operating systems in order to reduce software requirements.

When a listener process starts up, it obtains an outgoing (odd-numbered) channel from the
operating system/device driver. This channel, called the listener’s cmc channel, is used for L/ICMC
and CMC/L communications for the lifetime of the listener. Note that the listener’s cmc channel is
always in call mode.

Each active L in the system sends a keep-alive message to the CMC every 15 seconds. This is
depicted in Figure 3.2.2. The listener’s channel to the CMC must be in call mode (2.2.0). If two
messages are missed the CMC assumes that the host, or at least its network software, is dead. The
form of the message is (T_LSTNR,0)[ lad,-,mode,-,-,-], where lad is the listener’s local address, and
mode is a bit ficld that controls how the T_LSTNR message is interpreted at the CMC. If the
P_RESET bit is set in mode, the CMC will clear any virtual circuits currently active on the module
sending the T_LSTNR message. If the P_ACK bit is set in mode, the CMC will return a T_REPLY
message. This provides the listener with a means for testing whether the network is alive.

(1) TLSTNR

(2) T.REPLY

Figure 3.2.2

Constraints on T_LSTNR messages checked by the CMC include: lad in T_LSTNR message is in
use by another host, or there exists a listener process for the host, or lad supplied by L disagrees
with any topological knowledge that may be built into the CMC. The CMC will attempt to send
(T_REPLY,D_FAIL) if any of these errors is noticed, but this may not always be possible.

The importance of the listener and the L-related protocols diminishes somewhat for single-
user/single-process computer systems. Such systems indicate their nature to the CMC by sending
(T.LSTNR,1){ lad,-, mode,-,-,-] when coming on the network instcad of (T_LSTNR,0). The CMC will
reply to this message exactly as described above. However, such systems are exempted from sending
the TLSTNR message at 15-second intervals. The channel takedown protocol is also optional: a
single-user host may ignore CMC-initiated channel takedowns (the CMC will give up after a while),
and it may neglect to close any channels it uses. Receipt of a subsequent T_LSTNR message from the
host with P_RESET set in the mode field will clear any channel setups left hanging from a previous-
network access, For a minimum software implementation, the only essential network control mes-
sage other than T.LSTNR is the T_SRV message for requesting network service (see next).
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3.2.2 U/CMC

The protocol is command/response: U sends (T_RV.srv) to the CMC and expects a standard
success/failure message (see 3.1.3) in return. Figure 3.2.1 shows the T_SRV message going fo the
CMC and the reply T_REPLY coming from the destination. This is the normal case, although in
some failure situations the reply may be sent to U by the CMC. The main example of the|latter
type of failure occurs whén the service requested by U is not available.

The precise message format is (T_SRV,srv)[arex, lad, mode, -,-,-] where srv is taken froln the
list of network services (see section 4), arex and lad specify a network address (sce 3.1.2), and| mode
is treated as a bit field for selecting options. At present no bits are defined in mode fof user
processes. When a (T_REPLY, D_OPEN) reply is received (refer to 3.1.3) in response to a T_SRV ser-

vice request, param2 of that message will contain the destination machine’s channel pumber
new virtual circuit. |

As mentioned above the channel allocation scheme initially connects all even-numbered [chan-
nels to a non-existent address; odd-numbered channels are connected to the CMC. To obtaip net-
work service, i.e. set up a virtual circuit, a user process first obtains a free odd channel in call
on the local machine, sends a T_SRV message on that channel and waits for a reply. On Unix
operations are accomplished by the library routine dkdial (see section 8). |

3.2.3 CMC/L !

The CMC forwards a T_SRV request to the listener’s cmc channel on the destination machine.
This happens after the CMC has set up a new virtval circuit between the calling channel and 4 new
(even-numbered) channel selected by the CMC at the destination address. The forwarded message
is (2) in Figure 3.2.1. The content of the message is (T_SRV,srv)[arex, lad, n, t, carex, clad] where
TSRV and srv are from the user, arex and lad identify the called machine or terminal, n iis the
(even) channel number on which srv is requested, ¢ selects where L is to reply (see below), and
carex and clad are the network address of the caller. If r is zero, the reply is sent on channel n as
shown in Figure 3.2.1, otherwise the reply is sent to the CMC on the listener’s CMC channel.| | This
ability to redirect the T_REPLY messages was originally provided so that the control program for ter-
minal multiplexors could receive T_REPLY messages rather than have them sent to the terminals,

Figure 3.2.3

After the listener acknowledges a connection setup it is responsible for providing the requested
service. This usually consists of starting a server process S and giving it access to the new copnec-
tion. While the connection is in use the state of affairs is as depicted in Figure 3.2.3. It is asshmed
that U and S are on different computers. The fact that there is a listener process in contact with|the
CMC on behalf of each machine is shown explicitly.
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The listener may reject a service request by sending T_REPLY with a D_FAIL parameter instead
of D_OPEN. The lisiener may also do nothing, ignoring a service request. In this case the requesting
process.will time out, closing the channel.

3.2.4 CMC/ICMC

A CMC can control more than one node by accessing the control memory of remote switches
via trunk channels. It is more commen for there to be one CMC process per node. In this case
CMC's must cooperate in setting up connections between nodes. This section explains how routing
information is exchanged between CMC’s and how connections are st up across trunks.

The operation of Datakit trunks is such that data received at one end of a trunk on some
channel i is carried through the trunk and retransmitted at the module on the ‘other’ end also on

channel i. A trunk connecting two nodes is depicted in Figure 3.2.4. Packets can flow from any |

module in node 1 to switch SW1, to trunk T1, through the trunk to module T2, to switch SW2 and
thence any module in node 2. The node 2 to node 1 flow is similar.

Ti T2

node 2
node 1

Figure 3.2.4

A pair of CMC’s connected by a trunk exchange control messages on trunk channel 5. Chan-
nels 1 through 4 are reserved for diagnostics and testing. In particular channel 1 is connected to
channel 2 on each end of a trunk. These are half-connections; i.e. channel 1 sends to channel 2,
but the converse is false. This provides a loop-around facility for testing trunks during normal net-
work operating conditions. Channel 4 is reserved for routing channel-zero maintenance data to a
network monitoring station (see section 3.4.6).

Each CMC sends the other (T_CMC.0){arex,0, mode,links,-,-] every 15 seconds where arex is
the area code and exchange for that CMC, mode is a bit field explained below, links is part of the
routing algorithm described below, and the last two fields are reserved for traffic information.

Bits defined for the mode field are P_RESET, P_ACK, and P.NMS. The P_RESET and P_ACK bits
are similar in operation to those described for listeners in 3.2.1. The response to (T_.CMC, 0) with
P_ACK set is (T_CMC.D_ACK)[arex,n,-,-,-,-] where arex identifies the CMC sending the message and
n is the maximum number of trunk channels that the responding CMC is prepared for. The
response to the P_RESET bit is to take down all active channels on the trunk. The P_NMS bit notifies
the CMC receiving it that there is an active status-monitoring unit on the sender’s side of the trunk.
The receiving CMC may choose to route all its hardware status channels (channel zero on each
module) to channel four on the trunk, knowing that the opposite CMC will direct the traffic to a
monitoring system (see also section 3.4.6).

When a CMC receives (T_CMC,0) on a trunk, it increments the value of links and broadcasts
the revised message on all its trunks except those on which the T_CMC message for arex has already
been received or if arex is that of the CMC. This procedure has the cffect of distributing the arex
code of each CMC to every other CMC in the network every 15 seconds. Each CMC should
receive a message for every distinct path between it and another CMC. The length of each distinct
path is found in links, and the current traffic Joad on that path will in future be obtainable from the
remaining fields in the message.
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Connection setups across trunks proceed as in Figure 3.2.1 except that the single C#IC is
replaced by more than one as illustrated in Figure 3.2.5.

(1) T_SRV (3) T_.SRV

ge————-—— (4 TREPLY =

Figure 3.2.5

The protocol used at the U and L ends remains exactly the same: the connection setup prptocol
requires no topological knowledge, only logical addressing.
The connection setup depicted in Figure 3.2.5 proceeds in stages from Jeft to right. C

first determines that the connection must terminate in the part of the network controlled by C

channels permits collision-free forwarding of connection setups from one exchange to another
minimum (1) number of messages between CMC's.

The connection setup message between CMC’s is <cmcno, n>(T_SRV,srv)[arex, host,
carex, clad ] where n is the new trunk channel, # controls the listener’s reply, and carex and ¢

loaded by the first CMC to process a service request message and are preserved across trun
other CMC'’s,

presence on the network. A user process sends (T.SRV,srv){ arex, host, mode, -,-,-] to the C
an available channel in call mode and waits for a standard reply. A listener receives fi
T_SRV messages from the network and is responsible for sending the standard reply.

|
3.2.5 Summary |
A listener process sends (T_LSTNR,0) messages at 15 second intervals to a CMC to mj

3.2.6 Commentary

The even-odd channel allocation discipline is one of several that solve the contention pr
between incoming and outgoing virtual circuit sctups. The other most likely candidates are either a
top-bottom scheme where hosts allocate from the bottom and the CMC allocates from the top, or
schemes where the CMC assigns all channels. The even-odd or top-bottom schemes have the |pro-

preserving the simple transaction-oriented style of the CMC. Of the two schemes the top-bottom

and the partitioning of channels catered to the healthy paranoia of the implementer. These
siderations have lessened somewhat and might encourage a change to top-bottom strategy. L

The network control messages described in this section are not error-controlled. Alt
errors during channel setup are infrequent they do occur, and it has been interesting to o
what Kinds of things go wrong. In general errors in sending T_SRY messages from network host to
the CMC are practically nonexistent, and this is also true for messages from the CMC to a liske

l

o
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Problems that have been observed seem to involve noise or bad data mixed in with the first me

sages sent over a new virtual circuit. It is felt that new virtual circuits should be flushed on an end
to-end basis before being used. One way of accomplishing this involves sendmg T_REPLY as a con
trol message and having software awaiting the T_REPLY message ignore all incoming data except fo
control messages. A version of the software was tested in which all messages involving the CMC o
a listener were sent as control messages and received through a filter. However the actual channe
sctup error probabilities are low enough that this version was never installed on a permanent basis.

In order to recover from temporary CMC outage or transmission efrors in the U/CMC or

CMC/L path it suffices for the U process to be able to repeat the transmission of its T_SRV request

or to install a low-level error-control algorithm on the channels used for these communications.

Although experience with local Datakit networks suggests that error rates are low, there are
reasons to install a more elaborate protocol on channels to the CMC. One reason is that trunk
channels are more error prone by nature than virtual circuits within a single Datakit node. The
author’s CMC process often controls several Datakit nodes through trunks. In this case and in the
CMC/CMC case lack of error correction on virtual circuits to a CMC can be a lability since the net-
work control messages pass through a trunk. Another reason is that a low-level protocol would pro-
vide flow control as well as error control. Since no flow controls are specified for messages going to
a CMC, one can imagine a CMC being ‘flooded’ with service requests and other messages. A low-
level protocol on the so-called cmc channels (section 3.2.1), can be used to regulate the aggregate
request rate to a CMC by regulating the request rate from each network address. Lastly, a low-
level error and flow control protocol is a prereqmsxte for implementing the control message exten-
sions described in section 3.1.4.




3.3 Connection Takedown Procedures

3.3.0 General

Channel takedown protocols define message handshakes that synchronize changes in the state
of a virtual circuit. The sequence of eveats begins with an active channel. The active state was
illustrated earlier in Figure 3.2.3 where two processes, U and S, are depicted at different network
addresses each with a listener process. When a process terminates or otherwise relinquishes|a net-
work connection, we assume that the local listener process/abstraction is made aware of the ¢hange
in state. We imagine that the S process shown before in Figure 3.2.3 terminates. The immediate
result is diagrammed below in Figure 3.3.1 where the S process has been replaced by a "felease
channel” symbol ‘notifying’ the listener. It should be obvious that connection takedown pr.
must handle the various cases of one side or the other side of a virtual circuit releasing the jcircuit
first, as well as the case where both sides release at the same time.

Figure 3.3.1
It is inappropriate for the network protocols to define how the "release channel” informati

communicated to the listener, or how anything else is to be done save the details of actual
message exchanges. In the following sections it should be understood that the network prot
between CMC and L, or CMC and CMC. Message exchanges between the device driver

of the protocol into the listener for purposes of experimentation and debugging., Other impl
tions carry out the handshakes, attributed below to the listener, in the device driver.

3.3.1 DK/L

the last close is done on channel n. The listener must have ICHAN mode enabled: driv
messages are labeled as having arrived on channel -1. Although a channel in this state is

channel for other processes. This is done to prevent channel reuse before synchronization w
CMC.

33.2L/CMC

shut down. The D_CLOSE message is to be sent repeatedly until the CMC respon
(T_CHG,D_ISCLOSED)[-,n,-,~,~,~], meaning that L and CMC agree on the state of channel
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virtual circuit as soon as a D_CLOSE message is received from either side. When the CLOSEASCLOSED
handshake has been completed for one side of a virtual circuit, that channel may be reused,

SN

(1) D_.CLOSE

Figure 3.3.2

3.3.3 CMC/L

The procedure described under L/CMC is symmetric in that the CMC initiates a channe] shut-
down by sending D_CLOSE messages to a listener (same format as above). Upon receipt of such a
message a listener takes local action to hangup the channel, eventually leading to a D_CLOSE message
from the driver at which point D_ISCLOSED can be sent to the CMC. The CMC will repeatedly send
D_CLOSE for a particular channel until the D_ISCLOSED response is received from the appropriate
listener. This sequence of events is depicted in Figure 3.3.3.

[ ©

(1) D_.CLOSE
L
(2) hangup (3) release
signal channel
Figure 3.3.3

3.11




3.3.4 CMC/CMC

CMC'’s exchange D_CLOSE and D_ISCLOSED messages on channel 5 as described for L/QMC
above. A CMC upon receiving D_CLOSE from an adjacent CMC is responsible for tearing down its
part of the virtual circuit. This means either sending D_CLOSE to a listener or to another CMC.

3.3.5 Summary

The L process at each end of a virtual circuit goes through a command/response handshake
with its CMC. The initiator sends D_CLOSE until it is acknowledged by D_ISCLOSED. Channel take-
down can be started by an L, a CMC, or both.
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3.4 Maintenance

3.4.0 Auxiliary CMC Channel

Maintenance and other procedures require allocation of one of the channels that the CMC
reserves for the purpose. These are called auxiliary channels. A free channel in call mode can be
mapped to a CMC auxiliary channel by sending (T_SRV, D_AUX) and waiting for a standard
response. The channel, which must remain in call mode, can be used to communicate with the
CMC. Maintenance primitives that actively affect the switch can be dangerous in the sense that
accidental use could disrupt user communications. For this reason the CMC could be modified to
accept D_AUX and other commands only from known network addresses. For non-maintenance pro-
cessors the CMC could also demand a password after an auxiliary channel has been set up. This

would be indicated by responding with b_PLOG instead of D_OPEN. The response to D_PLOG would
be a null-terminated ASCII string.

3.4.1 Nailed Channels

Arbitrary connections between modules can be set up by sending (T_MAINT, M_NAIL)[swtag,
ml, ¢l, m2, c2} on an auxiliary channel to the CMC. The CMC attempts to set up a full-duplex
path between module m/ channel c/ and module m2 channel c2 on the local switch. The tag bits in
the channel routing table are loaded from (swrag>>8). Recall that the tag bits are used to mark
command channels (sec switch documentation). If the CMC is controlling muitiple switches,
(swtag&0377) selects a switch. After the channel is set, the CMC sends (T_REPLY,D_OPEN) or
(T_REPLY,D_FAIL).

A nailed channel is removed by sending ('r_MAlN'r.M;PRY)[ sw, ml, cl, -,~,-] on an auxiliary
channel to the CMC. This will be acknowledged by (T_REPLY,D_ISCLOSED).

3.4.2 Module Reset

Sending (T.MAINT, M_MBOOT){sw, mod, -,-,-,-] on an auxiliary channel will knock down all
channels on module mod, switch sw, within the Jocal exchange.

3.4.3 Switch Reset

Sending (T_MAINT, M_SBOOT){sw,-,-,-,~,-] loads the control memory of switch sw in the local
exchange with the default settings. This command is used on those occasions when a CMC is con-

trolling several switches and it is desired to bring one of them on line without disrupting the rest of
the network.

3.4.4 Configuration

The CMC programs that have been written by various authors assign channel memory space in
the Datakit switch to the different hardware modules when the programs begin execution. If a
module with a small number of channels is replaced by one requiring more channels, these control
programs must be restarted, interrupting network operations, to affect the assignment change. The
issue could be eliminated by simply assigning a large amount of channel space to each module.
Unfortunately the control memories in the original Datakit switches are not large enough for a large
default channel assignment.

A procedure for notifying a CMC of changes in network topology not detectable by the
CMC/CMC procedure (see 3.2.4) should be implemented. The goal is to avoid interrupting opera-
tions on a Datakit node to effect ordinary configuration changes. When CMC'’s are able to recon-
figure switch control memories, the following proposed message interface could be implemented.

The message interface consists of sending the message (T_MAINT,M_CONFIG)[sw, mod, miype,
nchan, -,-} on an auxiliary channel and waiting for the standard response. In this message sw is the
hardware switch number, mod is a physical slot number, mrype is the board type inserted in the slot,
and nchan is the number of channels to be reserved for the board.
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3.4.5 Tracing
It is possible to obtain an auxiliary channe] to the CMC and receive copies of internal tables
e

and other items. The interface is pretty crude and will not be documented here. However the idea
of accessing remote data structures from a program is worth mentioning. Since a process other than
the CMC can obtain a so-called command channel to a Datakit switch memory, it is possible to
ify the correct operation of a CMC by comparing the state of the hardware with the state indi

by the internal tables of the control program. The technique was used by the author as a debu

d
4
aid.

3.4.6 NMS

A network monitoring system processor announces itself to the CMC by sending
(T_NMS,M_LIVE)[ ch, -,-,-,~,-] to the CMC on a free channel in call mode. The CMC responds by
routing channel zero from every module in the local exchange to channel ch on the NMS. It is

expected that the NMS software will eventually use the message interface of 3.4.4 to notify the
CMC of configuration changes.

A CMC with an active NMS notifies adjacent CMC’s of this with periodic messages. It hlso
routes channel four of each trunk it controls to the NMS. This is the channel reserved for remote
status traffic (section 3.2.4). This technique has the effect of routing status information to an NMS
from every nearby Datakit node that does not have a private NMS. It aiso has the property that
one can move an NMS from place to place in a Datakit network and the channel zero status mes-
sages will follow.
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3.5 Manager Processes

3.5.0 General

The connection management protocol described in sections 3.2 and 3.3 is called Jow-level’
because the process initiating a connection must supply a destination address.” In this protocol the
CMC process acts on commands received from user processes. CMC operations consist mainly of
processing network addresses contained in commands.

There are many applications in networking — distributed file access, address and name trans-
lation, authentication, network resource allocation — that require addressing and control mechan-
isms different from the lower-level one understood by the CMC. As an example of higher-level
addressing consider the command “connect to any line printer”, which implies finding a line printer
in the network, as opposed to the specific request to "connect to the line printer server at network
address X". For another example consider the problem of establishing file server connections in a
network. In many distributed file system designs there are multiple servers at different network
addresses and the binding of files to file servers is meant to be transparent. This means that neither
the CMC, as it has been defined here, nor a user program can calculate the network address for a
file server given a file mame. Both of these examples illustrate an important characteristic of
‘higher-level’ address mechanisms: the address given in the command is implicit and some searching
or decision-making computation is needed to make the address explicit, i.e. to bind the command

to a network address. Schemes that demonstrate this characteristic are often called generic or func-
tional addressing mechanisms.

The line printer example could be solved by adding special software to the CMC for handling
printers. This might be reasonable in a network populated mostly by printers, but it doesn’t consti-
tute a useful network model. A CMC could also be made to know about files and file servers, user
terminal interfaces, and other specialized address and control spaces. One problem with this
approach is that the CMC quickly becomes unmanageable - it is not possible to bound the size and
complexity of the resulting program because there is always a pmeed for "just one more" special
accommodation. There are other problems such as possible deleterious effects new features may
have on old features, space and time limitations as the number of ‘features’ and processes grow in a
single program, and possible lack of a standardized CMC interface in a network consisting of many
CMC’s. What seems to be needed is a way of dealing with higher-level network control issues
without complicating lower-level protocols and procedures.

The manager process mechanism solves higher-level addressing and control problems by
indirection through the CMC. There are two parts: (1) means for addressing processes in the net-
work by name rather than by network address, and (2) means for processes in the network to con-
trol virtual circuits in behalf of other processes (described in section 3.6). The line printer problem
mentioned above would be solved by constructing a process in the network, the line printer
manager, responsible for all line printers. The CMC then forwards requests for line printer service
to the line printer manager which carries out the detail work of selecting a device and completing
virtual circuit connections. In this scheme a line printer is an example of a network resource, net-
work resources are owned by the manager processes, and are accessed only with the permission or
with the help of the manager processes. In implementing this model 8 CMC must know about each
addressible process in the network, but as Jong as sufficient connection management primitives are
available to a manager process the CMC doesn’t have to know what any manager process does.

The MGR primitives described below, together with the channel splicing primitives discussed in
section 3.6, provide a starting point for network ‘intelligence’ based on process addressing. In this
implementation manager processes are identified by an integer or by an ASCII string. Numbers are
assigned by the maintainers of the network. The string-based mechanism is provided as an experi-
mental alternative. Limits on string length are imposed by the present dependence on the 16-byte
packet size supplied by the network. For this reason the string mechanism is considered to be tem-

porary and not really available until packet size dependencies are removed from network control
procedures,
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3.5.1 T_MGR Primitive

A process becomes a manager in the network by sending (T_.MGR,n)[-,-,-,-,~,-] to the CMC on
a channel in call mode. This channel will be referred to as the manager's cme channel, and i kept
active by the manager during its lifetime. The number » is the manager’s non-zero identifidation
number. Only one instance of manager n is currently allowed within a single exchange. The CMC
honors a T_MGR request with a standard response (see 3.1.3), or a P_LOG response in cases Where
the CMC requires a key to validate the ‘identity’ of the process claiming to be a manager,

The string interface for managers consists of sending the message (T_MGR,0)[string] to the
CMC on a channel in call mode. The string name can be ten characters in length or may be null-

terminated and less than ten characters. The T_MGR message will be acknowledged with the|stan-
dard response by the CMC. '

3.5.2 Manager Access Protocols

Managers are accessed through the CMC. That is, a user process sends a message ident
a manager process, and the CMC forwards the message to the manager process if possible. There
are three message formats depending on whether the manager process is identified by an integer or
string, and whether a virtual circuit should be set up. If the manager process is not availablé. the
CMC sends a standard T_.REPLY message back to the requester indicating failure. If the ma ager
process is available, it is responsible for sending the T_REPLY message when new virtual circuits are
set up. This arrangement is exactly analogous to the three-way message exchange betweedn U,

CMC, and L shown in Figure 3.2.1 if L is replaced by a manager process and T_SRV is replaced by
TMSRV,

3.5.3 T_MSRV Primitive

If a process sends (T_MSRV, n) [-,-,~,~,~-] to the CMC on a channel in call mode where n is
the identification number of a manager process, the CMC will establish a new virtual circuit to the
manager if it exists. If the manager is not alive, the CMC sends a standard error response (see
3.1.3) back to the requesting process. If the manager is alive and well, the (T_MSRV, n ) messhge is
forwarded to the manager on the manager’s cmc channel. In the forwarded message (T_MSRV, n) [-
»=y=~»=] i replaced by (T_MSRvV, ch) [0,-,-,-,-,-] where ch is the channel number of the new ?nual
circuit at the manager’s end of the connection. Note that this is similar to the listener’s interface to
the CMC which uses param?2 for the same purpose. The manager is responsible for sending a|stan-
dard T_REPLY message back to the originator of the T_MSRV request on the new virtual circuit.

If the process sending (T_MSRV, n) is itsclf a manager process with id id, then the CM(
wards (T_MSRV, ch)| i, -,-,-.-,-] instead of (T_MSRV, ch)[0,-,-,~,~,~] as first described. A ma
thus ‘knows’ when it is being accessed by another manager.

secure as the CMC implementation and its validation policies for manager authentication.

3.5.4 T_FSRY Primitive

and param3 are loaded by the CMC with values that identify the sender. The local switch n
is in param3, module number in param4, and channel in param5. A manager process that re

T_FSRV can use the R_MAPTO primitive (sce section 3.6.4) to set up a channel back to the m
that originally sent T_FSRV.
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This form of access is provided as a special case for downline loading microprocessors on the
network. Since it might turn out to be useful for something else it was called T_FSRV instead of sim-
ply T.BOOT. The intent is to set up no channels at the behest of a microprocessor until it has been
booted. This simplifies the boot rom code somewhat. More importantly it simplifies clean up pro-
cedures in the CMC when bootloading fails for some reason or when the boot load works but the
program that was loaded doesn’t work. With T_FSRV the channels used during boot loading are
‘owned’ by a manager process rather than booted processor.

3.5.5 T_SMGR Primitive

Access to string-named managers is via the message (T_SMGR, -)[string] where siring is the
manager’s ‘name.’ If the manager can be accessed, (P_SMGR, ch) [siring] is forwarded. A new vir-
tual circuit is created and its number on the manager’s end is passed along as ch as indicated in the

message structure given above. As in the other cases the manager is responsible for sending a stan-
dard response on the new virtual circuit.

Since the string occupies most of the space in the message, the special processing described in
section 3.5.3 that applies when a manager process contacts another mamager cannot be imple-
meniad. This is one of several shorteomings of this implementation discussed in more detail below.

3.5.6 Commentary

The TMSRV primitive should make the param fields in the message available to the process
sending the message. Also the T.MSRV message forwarded to a listener by the CMC should have
param3 and param4 filled in with the arex and lad of the caller as is done for the T_SRV messages
forwarded to a listener. Before experiments with the string-named processes were carried out, the
param fields were in fact treated as suggested above. However the crude implementation of the
string facility destroyed param field processing for all T_MSRV messages.

Another problem with the manager mechanism as described is that there is no provision for
addressing manager processes that are not on the local Datakit node of the caller. The simplest
- solution would be to permit network addresses in the T MSRV message structure. A more interesting
approach would be to let a T_MSRV message propagate in an appropriately limited way, say to the
immediate neighboring nodes, to access a "non-local” manager process whenever a local one is not
available. -

Many improvements, some of them mentioned above, are needed in the current implementa-
tion. All the interesting and useful improvements depend on having larger messages containing one
or more variable-length strings. We would like for all addressible processes to be named by a string
rather numbering some of them. We would also like to pass file names, user identifications, and
other items along in the T.MSRV message. In such an environment we would probably change the
name T_MSRV to T_PSRV, designating the "connect to process” service.

It should be apparent that the manager process mechanism and its variants use the CMC as a
software-implemented message switch. In this role the CMC directs T MSRV messages to0 processes
with a virtual circuit setup as a side-effect in some cases. This would still be the case for the various
extended message structures imagined above - the contents of a T_PSRV or T_MSRV message would be
translated to an address by the CMC, the entire message would be forwarded along with any addi-
tions. In this environment the message structures should probably be arranged with process name or
function name near the beginning to simplify message parsing in the CMC.

Although the manager process implementation described here is a preliminary one, the next
generation versions should have the same structure with some generalizations. This kind of higher-
level addressing represents a significant improvement over ‘classical’ virtual circuit networks that
provide limited address and translation capabilities.
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3.6 Channel Map Primitives

3.6.0 General
The primitives described here arc for setting up specialized virtual circuits (section 3.6.4)

the separation between manager processes and the CMC. .

The sections that follow all describe the results of sending a T MAP message to the CMC.
CMC will accept such commands on any channel in call mode. With the exception of R_MAPTOj
T_MAP primitives present something of a risk since a malfunctioning process could use the primit
to disrupt communications on random channels. Since the mapping primitives are provided ! for
manager process use it may be necessary to restrict access in some appropriate way. ’

The protocol with the CMC is the same for each of the T_MAP primitives: a process senfls a
T_MAP message to the CMC and receives a T_REPLY responsc. Note that the syntax of the response
is (T_REPLY, code) [ch, err, 0, x, 0,0]. This is the same as the ‘standard’ reply defined in se ion
3.1.3 with the addition of x. Each of the T_MAP operations defines param3 as a place where, the
requesting process can put its own code number x. This code is returned by the CMC in| the
corresponding T_REPLY message. This lets the process talking to the CMC multiplex the channel:
several T_MAP operations can be requested without waiting for T_REPLY.

3.6.1 Splice Channels

Suppose a process C has an auxiliary channel to the CMC plus two other active channels to
processes A and B as depicted in Figure 3.6.1. If the message (T_MAPR_LSPLICE)[ c1,c2,-,%,-}-] is
sent to the CMC on the auxiliary channel, the CMC will establish a new virtual circuit between A
and B, leaving two half-circuits to C, as depicted in Figure 3.6.2. The CMC will respond on the
auxiliary channel with (T_REPLY,D_ACK)[-,-,~; X, -,~] if the splice is successful. The parameter| x is
not inspected by the CMC but is copied unchanged back to process C in the T_REPLY message. [This
helps process C multiplex the channel to the CMC if desired.

Figure 3.6,2
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The two half-circuits will be removed by the CMC when process C or its listener executes a
close handshake with the CMC (sce section 3.3) for each channel. If process C is on Unix these
handshakes are done when C closes its files for these channels. If C never opened the Unix file for

a channel, the DIOCRESET iocs! call will make the listener carry out the desired close handshake with
the CMC.

3.6.2 Splice Remote

The message (T_MAPR_RSPLICE)[swilsw2, ml, cl, x, m2, c2 ] performs a splice operation on
two channels identified by the parameters. The value x is returned in the standard reply message as
described earlier. The parameters spell out switch, module, and channel for each network address.
The value swlsw2 is a 16-bit value with swl as the low-order byte and sw2 as the high-order byte.
This primitive resembles R_LSPLICE in that it provides a kind of third party channel setup. The
differences are that R_LSPLICE connects a pair of channels that terminate at the network address of
the R_LSPLICE user whereas R_RSPLICE operates on a pair of channels that are ‘remote’ with respect
to the R_RSPLICE user. This primitive is more ‘physical’ in nature than R_LSPLICE and its use is res-
tricted: the command is accepted by the CMC only if the sender of the command is a network

manager process (see 3.6) and there are listener or manager processes at ecach of the network
addresses referenced in the message.

3.6.3 Splice

The message (T_MAP,R_SPLICE)[cmI, ci, O, x, cm2, c2] also specifies splicing of channels at
‘remote’ network addresses. The primitive is less ‘physical’ than R_RSPLICE and represents more
recent thinking on the subject of indirect connection setup. This primitive asks the CMC to set up a
virtual circuit between two network addresses identified as the opposite ends of local channels cml
and cm2. The situation is depicted in Figure 3.6.3.

Figure 3.6.3

In the diagram P represents the process sending the R_SPLICE message, and M1 and M2 are
the two modules identified by the channels cm/ and cm2. The parameters ¢l and ¢2 contro}l how
channels are selected for M1 and M2. CI controls the channel at M1, and C2 controls M2. If
non-zero cl and 2 specify particular channels. Either one or both of ¢! and c2 may be zero. The
CMC selects the channel for zero parameters. '

The T_REPLY message from the CMC for the R_SPLICE primitive returns ¢/ and ¢2 in param4
and param5. This is necessary because the CMC will choose channels on M1 or M2 if asked. The
reply message is (T_REPLY code ){ ch, err, 0, x, cI, c2]. No messages are sent to M1 or M2 as part
of the R_SPLICE protocol. It is assumed that the process P in Figure 3.6.3 notifies M1 and M2 over
chanrels cml and cm2 when the new circuit is set up.
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3.6.4 Map To

The message (T_MAP_R_MAPTO)[sw, mod, chan, x, -,-] may be sent to the CMC on any chan-
pel in call mode. It is interpreted as a request to create a virtual circuit using that channel to| the
hardware location specified by the switch, module, and channel address given as parameters. [The
CMC will honor such a request only if there does not exist a listener process for the specified |net-
work address and the address is not already in use. This mechanism is intended for constructing

diagnostic and maintenance software. The restrictions on its use preclude interference with other
network operations.
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3.7 Message Summaries
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3.8 Implementation Technigues

The following sections present code fragments and state tables for those parts of a user pro-
cess, the CMC, and listener processes that participate in ordinary virtual circuit setup and takedo
The C structures used below were introduced in section 3.1 and need not be reproduced here. |

3.8.1 Connection Setup

The connect subroutine shown here may be taken as a prototype for all user program infer-
faces with the CMC. It formats a dialour message, sends it to the CMC and waits for a reply. The
explicit conversion from local to network data representation is done by the routine dktcanon, which
copies from msg to buf with translation controlled by the string argument. Conversion from buf
back to msg is done by dkfcanon. The seleci_channel, send, and set_alarm routines are generic
names for functions that would be implemented on UNIX with open, write, and alarm system calls|

Note that the connect routine only gets a virtual circuit. Each service requires that the ciréuit
be ‘conditioned’ by some transport protocol, and most services require an authentication excha ge,
or login, before service can be provided. These exigencies could be dealt with by the code that calls
on connect, or the appropriate system-dependent mechanisms for turning on protocols and cstablish-
ing identification could be added to the code for conneci. The dkdial routine described in section 6
takes a hybrid approach: it does the function of connect plus the login funtion, avoiding the manipu-
lation of transport protocols. The point is that the network control architecture treats virtual cindits,
authentication, and transport as separate issues in a way that permits the software to deal with
separately or in a combined way as circumstances and network evolution dictate.

i
!
:
r

/%

# Connect to sexver at network address (arex,lad).
«/

connect(arex, lad, service)

{ .

struct dialout meg;

short buf{sizeof msg]l;

int cc, rec;

ch » select_channel(); /e get outgoing channel «/

1£f (ch==ERROR) /+ retuzrm on error «/
return{FAIL); .

meg.type = T_SRV; /s prepare dialout message &/

neg .8V = gervice;
mag.paraml = arex;
mag.paramt = lad;
meg.paran2 = 0;
msg.param3 0;
meg.parand = 0;
meg.param5 = 0;

cc = dktcanon(®cchhhhhh®,8meg,buf); /= convert representation «/

. mend(ch,buf,cec); /e send msg e/
set_alarm(15); /¢ set timer «/

rce = read(ch, buf, coj; 76 wait for reply &/
set_alarm(0); ) /¢ turn off alarm &/

/% On Unix rcc == -1 if the elarm goes off. «/
if (xcc==cec) {
dkfecanon{"cchhhhhh® buf ,Smagj
if (msg.types=T_REPLY &A msg.erv=s=D_OFEN)
zeturn(ch);
}

release{ch);
return{FAIL};
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3.8.2 CMC Channel Control

This section presents one of many possible state machine representations of the CMC'’s part of

connection setup and takedown as well as a code segment indicating one way of translating the pro-
tocol into working code.

It is convenient to represent the operation of the CMC as 2 composition of "channel machines"
or simple state machines. This is done below where two machines are given: the A machine for the
channel to a user process and listener, and the B machine for the channel to a server process and its
listener. Each machine has three states and responds to five input messages. The output messages
of each machine are represented syntactically by PIM, where P is a letter representing a process and
M denotes a message. The values for P are U, 8, A, and B representing the user, server, A
machine, and B machine processes. Figure 3.8.1 illustrates the relationships between the processes.

A machine B machine

Figure 3.8.1

In the table the T_SRV, CLOSE, and CLOSED messages are a shorthand representation for the
CMC messages that were defined in section 3.2. The DOWN message is sent between A and B
machines as notification that the channe] is being taken down. The TIMER message denotes the
CMC’s internal 15-second alarm clock event. Lastly, the setup and release actions in the tables

represent the making and breaking of virtual circuits in the network. A blank entry in the
next_state table entries below means that the next state is the same as the current state.

A channel machine

inputs T_SRV CLOSE CLOSED POWN TIMER
State next_state
action(s)
IDLE | OPEN
:gsetup chan 101 CLOSED
:BIOPEN
OPEN | WAIT IDLE WAIT
:DICLOSE :UICLOSED tWICLOSE
:releagse chan | :release chan
:BIDOWN ;B! DOWN
WAIT { OPEN IDLE IDLE WAIT
iBIOPEN :UICLOSED sUICLOSE ( :UICLOSE
:setup chan

3.23




{
|
B channel machine
inputs OPEN CLOSE CLOSED DOWN TIMER
sate next_state
:action(s)
IDLE | OPEN IDLE
:SIT_SRV ¢S ICLOSED
OPEN | WAIT IDLE WAIT
¢SICLOSE :SICLOSED 1S ICLOSE
:release chan | :release chan
sAIDOWN :AIDOWN
WAIT | OPEN IDLE IDLE WAIT
sSIT_SRV :S1CLOSED tSICLOSE | :SICLOSE

Each channel starts off in the IDLE state. Reception of D_CLOSE on any IDLE channel
result in a D_ISCLOSED reply with no change in state. A T_SRV message starts the connection up
procedure. The A machine passes the connection setup to the B machine as indicated by BIOPEN.
The B machine forwards the service request to the server with SIT_SRV. Both CMC state machines
remain in the OPEN state until one or the other or both sides releases the channel. The channel
takedown procedure is started by reception of CLOSE by one or both of the state machines. A
machine seeing a CLOSE event sends the CLOSED acknowledgement and notifies the other machine
with a DOWN message that it should take down the ‘other’ end of the connection.

3.8.3 Listener f

The listener’s statc machine is given below. It is formulated like the machines presented for
the CMC part of the protocol. The two message types, L.open and L.close signify events in| the

listener that accompany channel open or channel close operations by other processes on the listeper’s
machine.

The error cases in this machine detect inconsistencies in the listener’s environment and the
network control. The error! states signify illegal channel reuse by the network; i.e. the network
control software sets up a virtual circuit to a channel that is supposedly already set up. This really
isn’t supposed to happen, but if it does the listener has little choice but to abort the process currpntly
using the channel. The listener may then choose to accept or reject the incoming T_SRV mesfage.
The error2 states signify errors in the listener’s software environment: appearance of an L.close
without a corresponding L.open, and L.open of a channel that is being closed.

Listener machine

inpwts T_SRV D_CLOSE D_ISCLOSED L.open L.close TIMER
State next state

:action(s)

IDLE OPEN IDLE OPEN erxor2
:T_REPLY | :ISCLOSED

OPEN | exrox1 WAIT2 WAITY

shangup ¢CLOSE

WAITT | OPEN IDLE IDLE error2 | exxor2 | WAIT1
:T_REPLY } :1S5CLOSED ;CLOSE

WAIT2 | exrort WAIT2 WAITZ erroxr2 | IDLE WAXIT2

:CLOSE | :hangup
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4. Servers

4.0 General

This section documents the message interface to some existing network servers. If the met-
work address (3.1.2) of & server or service is known, access to the entity is obtained using
(T_SRV,code)larex, host, mode, -,-,-] to set up the virtual circuit as described in 3.2.2. )

4.1 Autologin

The Unix-based listener program requires the identity of the user before starting up most net-
work services. This could be obtained by forcing interactive users through a login procedure before
starting any scrver process. This would be impractical for non-interactive network access where
programs are not run directly from interactive terminals. Forcing a login for every command is
inhospitable in any case. The so-called autologin procedure is a compromise method that allows the
dkdial routine (see section 6) to automatically log in at a remote host.

The procedure is as follows: ’

1. After receiving a standard T_REPLY message (see sections 3.1.3, 3.2) indicating that a
new virtual circuit has been set up, the calling process sends the ASCH string representation
of the user’s login name on the new virtual circuit. The siring must be null-terminated and
in the present implementation must fit within a 16-byte Datakit packet. The remote
listener waits for this string to arrive on the new virtual circuit after sending the T_REPLY
but before providing service.

2. If the string is accepted by the listener, the listener responds with (T_REPLY, D_OPEN).
and starts up the requested service on the new channel.

3. If the string is not accepted by the listener, the response is (T_REPLY,D_PLOG) which
stands for "pleasc log in." At this point the calling channel is handed over to a normal login
procedure. The network service is started only after the fogin is successful.

The listener program contains within it a list of network exchange addresses for which the local sys-
tem wishes to allow autologins. If a T_SRV request comes ir from an exchange or machine not on
the list, the formal login/password exchange initiated by D_PLOG will be forced. Also, autologin for
privileged user ID’s is disallowed.

The autologin procedure is a compromise as already mentioned. It requires that one have an
account on each of the machines where autologins are wanted, but it does not require that the
integer account numbers be the same. This is a desirable property. Since the CMC is responsible
for filling in the network address of a caller, the exchange and logical address numbers can be
‘trusted’ as a basis for discriminating between callers. This is another good property. One draw-
back of the original implementation was that there was nothing to prevent a user from making a
private version of dkdial that would log its owner in as anyone, except privileged users, on a remote
system. This problem was recently addressed by Andrew Koenig who modified the device drivers
and dkdial routines so that (1) the driver restricts the call setup operation to privileged processes,
and (2) the dkdial routine runs a ‘safe’ privileged process that does the actual setup protocol and
login handshake. This is, of course, just the tip of the sccurity iccberg. The improved dkdial can
be compromised by any user who can break the normal access checks on his machine. Lastly, no
matter what steps are supposedly taken in the software of a2 computer making a network connection,
there is no general way for a computer receiving a connection setup message to verify that the
software on the calling machine was not compromised.
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4.2 T_SRV Servers

The services accessible via the srv field of a T_SRV message are outlined below. Services|are

named by their srv code as it appears in /usr/include/dk.h. Although the terminology used to
describe the services comes from Unix, translations to other system environments should be obvigus.

D_XSH - perform autologin, turn on a stop/start flow control, turn off echo, run the shell.
This is the original virtual terminal interface and is seldom used. '
D_YSH - perform autologin, turn on the so-called TDK flow control discipline, run the shell,
D_SH - carry out autologin, turn on the trailer protocol, run the shell.
D_LOG - turn on the TDK flow control, and run the system login procedure. This is|the
present interface between terminal controllers and hoests.
D_FS - perform autologin, turn on the packet driver protocol (see section 5), run the|file
server program.

D_XFS - perform autologin, turn on the packet driver, run a test version of the file server,
D_EXEC - perform autologin, turn on the packet driver, read a null-terminated string, iﬂfxe-
cute the string as a Unix command.

D_TREXEC - perform autologin, turn on the trailer protocol, proceed as with D_EXEC,
D_NULL - do nothing; the channel is closed if not in use by some process within 15 seco

The multiplicity of ways to connect to a Unix shell, D_XSH, D_YSH, and D_SH, and to exe

might be tempted by ‘interim’ solutions to metwork contrel probiems.
The D_EXEC operation is the basis for most of the networking programs that have been i

the program will accept a string to be executed. With this improvement the listener program al
runs login which always runs the desired server or process. If messages exchanged between list

the various message exchanges described above and unify the separate access procedures for serv
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§. Trailer Protocol

5.0 General

" Several different transport protocols are in use on Datakit networks. They vary greatly in
complexity, performance, and function. The trailer protocol results from experience with several of
these, including the packer driver protocol, ! and from efforts to accomodate properties of Datakit
hardware and UNIX-based software into protocol design.

:n[e tfailer protocol is a procedure for end-to-end error control, flow control, and out-of-band
signaling between a pair of processes communicating over a virtuzl circuit. Error control provides
for retransmission of lost data. Flow control regulates the speed of transmission to the receiver’s

*input processing rate. Out-of-band signaling allows user processes to mark and also to interpolate
command information into byte streams.

The protocol takes as the definition of virtual circuit the one provided by Datakit: a virtual
cirouit is like a transmission line in that it may damage or lose information but will deliver mes-
sages in the same order as they are sent. It is alsc assumed that the parity checks built into the
Datakit hardware and device handlers are adequate for detecting transmission errors. Since the net-
work discards any data whose corruption is detected by parity and eyclic redundancy checks in the
hardware, transmission errors appear at the protocol layer as an absence of data.

5.1 Trailer Protocol

The trailer protocol is so-called because the message format consists of a sequence of zero or
more data bytes terminated by a trailing control message. The boundary between control and data
is marked by a control byte (see section 2.1). Several versions of this protocol have been tested in
the past. The first implementations constrained the control byte to be the first byte of a hardware
packet. That is, the trailers were represented as control packets as defined in section 2.1. This res-
triction was imposed by the Datakit device driver and not by the protocol and is mentioned for his-
torical interest. No such restrictions are to be understood here - the protocol defines a byte stream
algorithm independent of hardware framing.

The technique of using trailers instead of headers as in other transport protocols has certain
merits: a transmitter can begin sending a message without knowing how long it will be - a trailer
will eventually terminate the message. In addition buffer management and error control in the
receiver are less complex than for header-based protocols. Because a response to a received message
cannot be generated correctly until the entire message has been read, sequence numbers and bytes
counts at the beginning of a message must be stored as the message arrives. This creates buffer

management problems. By using trailers instead of headers, control information becomes available
precisely when it is needed.

§.2 Message Formats

The messages in this protocol consist of a (possibly null) data part followed by a fixed length
trailer. The trailer format consists of an 8-bit type code foliowed by an 8-bit sequence number, a
16-bit parameter, and a terminating control byte. The table below enumerates the messages - capi-
talized names represent constants defined in /usrfinclude/tr .k, *-° indicates padding, <data> denotes
zero or more data bytes, and <> denotes zero data bytes.

The emark symbol in the table is the end of message control character. In normal operation

the receiver stores incoming data until an emark byte is scen. If input buffers overflow before this
happens, the saved data is discarded.

A message may be terminated with either of emark as explained above or ebad. A message
ending with ebad is to be discarded. This rejection code could be generated by the sender of the
message if it decides to abort the transfer. It might be generated by hardware or software at the

! The packet driver is documented in TM-11273.814.
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receiver while checking the hardware parity indicators or the contents of a trailer. That is a lo'L/er-

level layer may translate emark into ebad.

TR Protocol Messages

data fype Sequence  param
<data> P_DATA xseq nbytes emark
<data> P.CMD xseq pbytes  emark
<data> P_MORE #seqg nbytes emark
<data> P _ERROR xseq nbytes emark
<> PREJ rseq - emark
<> PB.ALLOC rseq nbytes emark
<> PRALLOC rseq nbytes emark
<> PSYNC g2 sre emark
<> P.RESYNC - - emark
<> P_ENQ eseq epoch emark
<> P_RESP eseq epock  emark

|
|

mentations at present generate transparent control messages, it is expected that future implem
tions will. Therefore receivers must be prepared to recognize these messages without error if
happen to be embedded in data segments.

The P_REJ, and P_ALLOC messages may appear within <data> scgments. Although no i#Fple-

nta-
they

The definition of the type control characters includes a bit P_CHK that is set for each of the

transport types and cleared for all the others. This distinguishes the transport messages as a
and simplifies an implementation since only transport messages have sequence numbers check
monotonicity and have non-null data segments.

The multiplicity of transport messages deserves some explanation. P_DATA is the princip:
rier of data. The P_MORE message is used as a sub-record delimiter when records larger than
(bsize defined below in 5.3.0) are to be passed through the protocol. A sequence of F.MORE

class
for

car-
bsize
mes-

sages is terminated by a P_DATA message. The P_ERROR message provides an out-of-band |error

message path (5.3.4). The P_.CMD message operates like the P_DATA message, but signifies th

t the

contents of <data> is command or control information in a higher-level protocol as distinguished

from data in that protocol.

5.3 Informal Description

5.3.¢ Outline
This section introduces terminology and briefly describes the major parts of the protocol.

The words ‘reader” and ‘writer’ will be used to distinguish between application programsusing

an implementation of the protocol and ‘receiver’ and ‘sender’ which denote components of an

ple-

mentation. For example data flows from writer to sender to the network and thence to receiver
and finally a reader. The adjective opposite will be used to denote entities at different ends of|a vir-
tual circuit. For example a sender transmits data to the opposite receiver. Similarly local denotes

entities on the same end of a virtual circuit. For example a receiver may cause its local sen
transmit acknowledgement messages to the opposite sender.

maintains an 8-bit counter xseg corresponding to the number modulo 256 of messages tran
over the virtual circuit, another 8-bit counter Iseg which is the sequence number of th

The protocol is defined between four entities: two senders and two receivers. Each jtnder

er to

itted
most

recently acknowledged message, a value avbyres (controlled by the opposite receiver) which lis the

sent but not acknowledged by the opposite receiver. Each sender also observes a paramete

number of bytes that may be sent, and a value xbyres which is the number of bytes that havj
supplied during initialization by the opposite receiver. Bsize is the maximum number of dat
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allowed in any single message.

The sequence numbers in messages are inteaded for error control only - not flow control.
Sequence numbers are needed to detect missing messages in an otherwise correct stream. The
sequence number space is made large enough so that the byte counts used for flow control will nor-
mally control the flow of data long before the sequence numbers wrap around. Of course a_test for
sequence numbers wrapping is needed for correctness, but this turns out to be a test for equality of
two numbers. This test is much simpler than the arithmetic needed to do "sliding window" caleula-
tions as required by typical protocols with 3-bit sequence numbers spaces that use the sequence
numbers for both error control and flow control. This may seem like a minor issue, but it turns out

to have noticeable consequences when one begias to implement a transport protocol in special-
purpose hardware.

Each receiver maintains a counter, rseg, that holds the sequence number of the most recent
correctly received message. Each receiver manages a buffer area of some persuasion where the total
number of bytes the receiver can commit to the circuit is denoted by nalloc. The maximum number
of ei:1.<anding sequence numbers a transmitter is allowed to have, normally called a window, is 255,

The inisimum value for nalloc is 128 bytes. The maximum value is 16384. Bsize is constrained by
an encoding scheme to be nalloc/i where i may be 1, 2, 3, or 4.

The error control algorithm in the trailer protocol uses an adaptive timeout mechanism. This
lets the protocol implementation adjust to variations in propagation delay and system loading. It is
assumed that a system clock #ime is available that increments at least every 1/60 second. Each
sender records in a variable called epoch the value of ftime for the most recently transmitted mes-
sage. Each sender also maintains a variable called wtime which is the error control timeout delay,
i.e. the length of time in #ime ticks to wait without a reply from the opposite receiver. Wrime is ini-
tialized to 1 second and adjusted up or down by the sender according to observed delays. Each
sender also maintains a counter called eseq that is incremented each time the sender enters a
blocked state because of either flow control or error control. This counter is sent in P_ENQ messages
and echoed by the opposite receiver in P_RESP messages so that a sender can put the communication
link in a known state and measure the end-around delay. The timeout control algorithm has some
hysteresis - it is biased more toward increasing timeout delays rather than decreasing them. This
assures that the timeout controls will not oscillate when faced with stochastic network and operating
system delays.

The messages in this protocol may be classified in the following way: fransport messages are
represented by P_DATA, P.CMD, P_MORE, and P_ERROR; flow control messages are represented by
P_REJ, PALLOC, and P_RALLOC; control or handshake messages are represented by the following
command/response pairs - P_SYNC/P_RESYNC, and P_ENQ/P_RESP.

The transport messages share the same sequence number space. The flow control messages
are sent in response to received transport messages. The control messages operate in pairs; e.g. the
response to P_SYNC is P_RESYNC.

The variables and parameters described above define the state of a communication link as
modeled by this protocol. These are in summary xseq, Iseq, avbytes, xbytes, bsize, epoch, and wtime
for a sender and rseq, nalloc, and bsize for a receiver.

5.3.1 Initislization

Initialization is accomplished with a pair of two-way bandshakes: P_SYNC/P_RESYNC. Each
sender fransmits P_SYNC messages repeatedly. When SYNC is received, RESYNC is sent in return.

When a receiver has detected both SYNC and RESYNC or has observed both SYNC and one of the
transport messages, it then concludes the channel is live.

Each receiver chooses the initial values for rseq, nalloc, and bsize. These are sent in P_SYNC
messages to the opposite sender. Nalloc and bsize are encoded in the size field of the P_SYNC mes-
sage. The Jower 14-bits are for nalloc. The top two bits xy select a value for bsize. If xy is zero,
then bsize is nalloc/1. If xy is one, then bsize is nalloc/2. In general bsize is nalloc/(xy+1).
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The semantics of P_SYNC are that the Ioca] xseq, [seq, bsize, and avbyres are initialized by the
values obtained from a received P.SYNC message. Xseq and Iseg are loaded from the seq Field.
Bsize and avbytes are extracted from the size field as explained above. Xbytes is initialized to

The initialization messages may be repeated afier the protocol has been transporting data.
This is called a secondary inirialization. The purpose is not to renegotiate the parameters for 3 ses-
sion although it could be. Instead secondary initialization is a ‘feature’ used to avoid the overhead
of tearing down and then recreating the sofiware coatext of a protocol when we want to replace one
end of a virtual circuit by an altsrnate destination. This situation arises when a terminal or p
that is at one moment connected to machine A desires to switch to machine B. The problem to be

made to B.

Either side may begin a sccondary initialization by sending & P_SYNC message. When P
is received the proper action is to duplicate the handshakes described above: respond with P_RE
and send P_SYNC messages until P_RESYNC is returned. Jn examples where secondary initialization is
useful senders tend to be quiescent before and during the procedure, i.e. they have no data to send.
In the cvent that a sccondary initialization begins and a sender is mot quiescent, any ontput

transmissions should use the ‘mew’ sequence pumbers starting with seq from the P_SYNC me
This may require repumbering some output messages.

5.3.2 Data Transport

§.3.2.0 Output Contro}

Values of xseq, Iseq, xbytes, and avbyies are ‘established by a P_SYNC/P_RESYNC exchan
both senders. Each time a transport message is to be sent xseq of the sender is increment
become the sequence mumber of the new message. However if the value of xseg would

ment operation is actually carried out ard if the result of subtracting both xbyres and the
<data> in the new message from avbyzes is non-negative. When a message is sent the val
xbytes is incremented by the size of <data™> before any additional output processing.

Note that the test for xseg equaling lseq is the sequence pumber wraparound test, not a|win-
dow flow-control mechanism. The real flow control is done by the byte count tests.

Note also that the size of <data> is allowed to be zero. A receiver must faithfully repraduce
zero-length writes through the channel by delivering a corresponding number of zero-length jmes-
sages to the reader. The propagation of zero-length messages is a simple mechanism for placing
marks in the end-to-end byte stream. This is discussed in more detail in section 5.3.4.

The conditional increment operation on xseg prevents the sequence number ‘window’ ffrom

counts alone, byte counts plus complicated sequence number checks are redundant and incur
running overhead, (3) sequence number management on hardware with 8-bit arithmetic
done directly without bit masks and modulo arithmetic.

£.3.2.1 Receiver Error Control
A receiver checks that incoming transport messages are properly framed, checks in

correct reception of message number rseg and also transmits a current value for avbytes t
sender.
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A receiver enters the error state when one of the trailer checks mentioned above fails or when
its input buffer area overflows. In the error state the receiver does nothing to rseq, does not send
P_ALLOC, and may send P_REJ. The P_REJ message uses the current (unmodified) value of rseq. A
P_REJ message thus contains the sequence mumber of the last correctly received message. This
informs the transmitter that all messages with sequencs numbers up to and ircluding rseg were suc-
cessfully transmitted and that an error was detecied afier the iast good message. The transmitter
should begin retransmitting messages starting after the sequence mumber received in an P_REJ mes-
sage.

After sending one P_REJ message a receiver may nof send another without having first received
a correct message (and thus sent P_ALLGC). This resiriction makes P_REJ equivalent to a fast

transmitter timeout and avoids the multiple retransmission problem that arises when the first of a
sequence of messages is received in error.

Under certain conditions a sender may transmit a P_ENQ message (sections 5.3.2.3 and 5.3.3).
The receiver responds to this by sending a P_RESP message followed by a P_.RALLOC message. The
eseq and epoch parameters in the P_RESP message are copied from the P_ENQ message. That is, the
P_RESP message cchocs the data from the P_ENQ message. A P.RALLOC message is formed exactly
like a P_ALLOC message: it sends the receiver’s current value for rseg and buffer space. However

the rseq field in the P_.RALLOC message is interpreted differently from that in the P_ALLOC message
(see 5.3.2.3).

5.3.2.2 Receiver Fiow Control

A receiver generates P ALLOC messages when trailers are received as explained above. In
addition P_ALLOC messages are generated when data is transferred from receiver to reader. Each
P_ALLOC contains the current value of rseg and z byie count. From the receiver’s point of view this
byte count is the number of additional byies it is prepared to accept from the sender. From the
opposite sender’s point of view this bytc coumt is used to calculate 2 mew value for avbytes
(explained in 5.3.2.3).

Let R represent the amount of acknowledged data in a receiver’s buffer area that is waiting to
be delivered to a reader. Let S represent the additional buffer space available to the receiver for
more data: i.e. S = nmalloc = R. S is the value sent in P_ALLOC and P_RALLOC messages. We
assume that nalloc remains constant for a receiver during a session although this is not strictly neces-
sary.

In this flow control method S decreases as data arrives at a receiver and is acknowledged.
Additional buffer space becomes available as the received data is transfered to a reader, and §
therefore increases. In general P_ALLOC messages ar¢ generated when S changes.

Some optimizations are available to the receiver. It is left up to the an implementor whether
or not to abstain from sending P_ALLOC messages every time that S increases. For example if the
reader is picking up bytes one at a time, the receiver may elect to send P.ALLOC only after the
increase in S exceeds some threshold. On the other hand no such Liberty may be taken with the
P_RALLOC message: it should represent the true siatc of a seceiver,

5.3,2.3 Sender Flow Control

When a P_ALLOC is received, the local sender releases message buffers for messages with
sequence numbers Iseq +1 through the value of rseq in the P_ALLOC message. The new value for
Iseq is rseq. Xbytes is decremented by the number of bytes in the just-released message buffers.
Avbytes takes on the value nbyfes from the P_ALLOC messages.

The nbytes value in a P_ALLOC message is an ‘absolute’ rather than ‘relative’ value. This
means that if a pair of identical P.ALLOC messages were feceived in the presence of no other
activity, the second onc would have no effect on the state variables. This also means that a receiver
can send P_ALLOC with a byte count of zero to halt the byte stream.

If a sender is blocked, waiting on avbyres to increase, and deduces (by timing out) that P_REJ,
or PALLOC are not forthcoming, then P_ENQ/P_RESP may be used to determine the true state of
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affairs, .The .blocked sender may transmit P_ENQ and expsct to receive P_RESP in response.
th.e receiver is supposed to send P_RALLOC after sending P_RESP, the data flow should start
with one difference: if the rseq field in the returned P_RALLOC message differs from the sender’s

value for xseq, then the message has the samec effec: as P RE! and refransmission should begin a
sequence number following rseg.

§.3.3 Timeouts

There is but one timeout wrime defined in the protocel. It is used by the sender, and its|pur-
pose is to detect transmission errors by noticing that output messages have not been acknowledged

by the opposite receiver. The procedure to be followed when the timeout period expires is a
lows:

1. increment eseq.

2. send P_ENQ messages until there is a P_RESP response. The local value of ttime is
with each P_ENQ message in the epock fieid. Returned P_RESP messages are discarded
one with a matching eseq field is returned.

3. The difference between the value in a returned epoch field and the local stime ap
mates the round-trip message delzy.

If the round trip delay caiculated by a P_ENQ/P_RESP exchange is greater than wrime then the
observed delay is used as the mew value for wrime. This increases the timeout in response to|net-

work delays or operating system delays at the opposite end - it is not practical to differe
between the two.

The value of wrime is decreased in two circumstances:
1. if the round-trip delay measured by a P_ENQ/P_RESP handshake is less than 1/2 the exist-
ing value for wtime, wrime is halved:

2. if a sender blocks on flow control but becomes unblocked before wrime expires, the¢ the
amount of time spenting waiting becomes the new value for weime. i

These conditions for decreasing wrime are somewhat conservative, providing needed hystéresis
in the system. It is important that timeout periods increase more quickly than they decrease. | The
policy described here could be made even more conservative if experience proved it necessary. {The
most direct method would be to require tha: the two timeout-decreasing circumstances hold for a
time interval that exceeds some multiple of wrime time units. Arbitrary smoothing of timeout
response characteristics could be introduced in this way.

§.3.4 Out of band signals

The trailer protocol provides out of band signalling in three ways: zero length records, the
P_CMD message and the P_ERROR message.

The zero propagation mechanism can be used in many instances to simplify higher-level p
cols. For example a stream-oriented buik file transfer mechanism has been built that sends a file in
two parts, each part terminated by & zero-length record. The first part or header consists of the file
name plus ownership, and mode. The second par: is the file. It is easy for the file transfer reader
to switch between header processing and file copying after observing the terminating zero-length
records. Other applications involving the use of existing Unix software need the zero-length record
facilty or some equivalent since a zero-length read is the ftandard indication of the end-of-file condi-
tion for the system,

It is of historical interest to note that the original packet driver (see earlier footnote) provided
zero propagation. The uwucp program which contains the packet driver utilizes zero propagation to
mark the ends of files, although the exact technique is more complex than the one described above,

The P_LERROR message provides a scparate “channel’ for multiplexing error messages
higher level processes to a terminal. The intent is to provide a place to put Unix stderr messa,

The P_CMD message provides a2 way of interpolating commam:! and data information. | For
example @ virtual terminal protocol may implement a local echo facility instead of remote ech?. If

the terminal protocol is to be transparent to Unix application programs, then program-genefated
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commands that change the state or mode of the local terminal must be propagated across the virtual
circuit. This situation is solved in the trailer protocoi by sending data to be printed or displayed in )
P.DATA messages and mode commands in P_CMD messages.

5.3.5 Shutdown

Earlier versions of this protocol defined an explicit closing handshake, but this is not strictly
necessary. Instead either side may “clean up” the link by sending @ zero-length message in the nor-
mal manner and then fall back on the channel shutdown procedures (section 3.3) to complete the
job.

5.9




6. LIBDK Routines

6.0 Introduction

Most of the network access protocols (section 3) that are meant for user programs have
encapsulated as library routines. On Unix these routines are kept in-the file /lib/libdk.a. Th
summarized below.

6.1 Channel Setup Routines |

been
y are

struect dkaddr
netname (name) - return network address for name.

dkdial(srv,dkaddr) ~ gonnect to service srv at network address lad, arex.
gtruct dkaddr dkaddr;

dkcall{sxv, name) - connect to service srv on host name.
char aname:?

dkexec(name, cmd) ~ execute the shell command line cmd on host "name”.
char #name, #cmd:;

dkaux() - obtain an auxiliary channel.
dkmgr{id) - become manager process with id id.
dkmap(sw, mod, ch) - obtain channel to a physical address.

The netname routine returns the network address corresponding to the string name in thi
of a dkaddr structure which has the form:
struct dkaddr {
short area;
short exchi
ghort lad;
i3

form

This routine always returns a structure value. [Errors are indicated by returning a value of|-1 for

lad. Note that this routine preempts the value -1 for a network logical address.
The subroutines dkdial through dimap return a Unix file descriptor if successful or -1.

Each

of these routines is meant to establish a virtual circuit in the network. The virtual circufmts are

accessed by read/write operations on the returned file descriptors.

Dkdial executes the T_SRV channel setup discipline to return a file descriptor to service srv at
network address host plus arex. The dkcall routine has the same general purpose as dkdial, but
translates name to a network address. Both dkcall and dkdial set a global variable dkrchan with the

channe]l number obtained at the remote host (see parem? in 3.2.2).

The dkexec routine returns a file descriptor connected to the standard input and outpl;t of a

process executing command cmd on the computer specified by name.

Maintenance and other programs can use dkaws to obtain a file descriptor for an auxiliary

channel (3.4.0) to the CMC.

A manager process with identification number id makes itsclf known to the CMC b}
dkmgr(id) which returns a file descriptor for a channel to the CMC.

Dkmap returns a file descriptor for channel ch on module mod on switch sw where sw i

using

inter-

preted as a particular hardware switch under jurisdiction of the local CMC. That is dkma‘ is not

meant to work across exchange codes.
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6.2 Channel Manipulation

dksplice(dk, cm1, c1, cm2, c2, x) - splice two channels using R_RSPLICE.
dklsplice(dk, c1, c2) =~ splice two channels with R_LSPLICE.

dkminor (dk) ~ return channel number for file descriptor dk. ‘
Xf dk is a file descriptor for an auxiliary channel to the CMC, then dksplice and dkisplice will
splice together channels according to the description in section 3.5.

If dk is a file descriptor for a Datakit channel, dkminor(dk) returns the channel number.

6.3 Data Conversion

dkfcanon({fmt,from,to) - convert canonical to local format.
char «fmt,+from,sto:

dktcanon{fmt,from,te)~ convert loczl to canonical format.
char «#fmt,«from,*to;

The various message formats in this document are defined as binary C structures. Section
3.1.0 defines the canonical transmission format for these structures, and the routines dkfcanon() and
dkicanon() help with conversions. For each routine the data at from is copied to the area at fo under
the interpretation of the null-terminated string fm¢. Each routine returns the number of bytes
moved to 0. The format string is composed of the ietters ¢, &, and /, which stand for byte, short,
and long respectively. The copy proceeds by moving 1, 2, or 4 bytes for each ¢, &, or I encountered
in fmt until the string is exhausted. By way of sxample a dialour structure (see section 3.1) could be
converted from the local C represention to canonical represention as follows:

dktcanon("cchhhhhh", fmeg, buf)
where msg is the name of the dialour structure and buf is the target buffer.
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8. Permuted Index

The following is a permuted index of terms plus the page numbers where they are discusséd in

sections 2 through 6.

logical
local
network

dkmsg

message

driver

listener ioct)

CMC ioctl

node configuration
auxiliary cmc
listener cmc

nailed
splice
parity
virtual
auxiliary
listener

area
exchange

node

error
flow

network

data

network message

trunk module

A4Aress .......cooveneeoncrnnne
BAGIESS coevuinneinonreonrararasoninces
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BITAY se0ovconcercrisessronensoossssssses
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auxiliary eme changel..............
backplane glot....cccovererencaconncnns
byie order ..c.coveiriereireeconncnnns
call mode .ovvveniiniirerniienienen.

ChHaNEES.....coomnranranarorarsoonssanes
channel...c.coconeonroierarosonsonsonee
chanmel.......ccceaeerronosocssossesns
channel map primitives............
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channels...coccanrcscenesnncsoonnsscane
channels...... wsecrescncanannecasasrane
CheCKInE .ovovoncesensnansssocossossass
CITCUI aueuaronacass vaeasnn snsaoose
cme channel.....cvoensvonccnnersoncecs
cme channel.........ccocorcncmcanns
CMC implementation technique
CMC ioct] calls.ceeeneranvences
CMC maintenance procedures...

Computer Port Module............
configuration changes..............
CORDECHON .covvonnrrranss vososaassssas
COMTOL. eceeurernsnnsnonasosasoonanonans

CONEIO} MESSEEL 1ecverranrancnoconnes
control message format......coen..
control packst ......ceevennrs sosoaas
CORVETSION .ooccncrusaseasrnrcosssnonss
CPM ..covooonmnonae cvsoene
D_ACK.......... cevouseonsaceoosasss
data CORVErSiOn..vvervesercosoncassan
data packet....coecercnannosossosecss
data 7epresentation ...eoseessecsssss
definition ..icoieeisonsorsersostocscons
D_FAIL. . cocrinrnriennessacssasassuens

(diagam) 004000 00DRAOPIRDONRACERO00NRY

8.1

31

223235

2324
2.2
2.3

3.13
3.13
35
3.18
2.1
2.4
3.13
3.18
5.1
31,34
3.13
35
3.22
2.3
3.13
321
i3
33
2.4
3.13
34
5.1
5.1
2.1
3.1
2.1
6.2
24
3.3
6.2
2.1
3.1
3.1
3.3

3.7




driic specimen
packet

Unix

transmission
Iocal

remote process
input

output
sequence

Unix special

network control message
hardware
message

logical
cMC

Unix driver

listener

cMC

CMC

GKUR ..ooicnnnrnnrerenansncoosne evossaao
BECRE coveenonconeone tersessserenconanns
ARAiak. ccoeoernerinerereererennsoosooos
dkerec

ooooooooooooooooooooooooooooooooo

---------------------------------

..........................

CRSPHEE «ovvvonnemrrenremonneccasnonns
GEECANON 1oroeecncnrnanananaccenrncnens
D_OPEN ..cocorieerreneccraneenneas
D _OPEN ......... seesossacensrnocans
drllc specimen Qriver .............
GRIVET ..voovmsoscoresssnsssarsaseasaons
OFIVET o courenoncosnnsnsaasassoosnonsanss
driver call SetBP .eercorarecronsorsace
driver i0CH. . ccavnrenenns sosssesenssce
driver muRIPIERING o voovocvornoosons
€770T COBITO] coocorsrcossrsorocaronans
ETFOTS cocnnascascasassacossssssosansosss
CRCHADER covorrsnersorsrosssssonassssre
exchange eode ..couveeoncanccoccranes
exchange BRMBET cvecevreioncnonnne
EXCCULIOD 2courovracereoecocracsnsooss

file server....... comescessensoso
flow contro] ...coveeees snnsnscsssonsaa
format ........ oensorenas oocsescassrasns
framing.......cooceeeeommvvnnneoniones
framing....ooccoorrenveravorerooncnnans
bardware fAMIBE..coonesaccnaescnse
oSt RRIMBET .ouvveenreconeconaaonsases
impiementation technigu® ........
Input fif0..corvo0am0se000ansoncossrsans
ioct] calls....covencanse
kecp-alive MESSAZE ceoverescnsrnncan
fibrary routines .cccvecovosccsassocase
listener cmc channel...cccocoorcnces
Histener ioctl calls.veseroorseasonsonse
logical address....c.cvavasersonncocn
fogical host number...ccormescescoes
T
maintenance procedures.cooacorsso
manager prowsses eomeqnensoonsoovas

channel map primitives....coeevenssrocacs
channel masking ........creceresrssnssconsonens

8.2

2.3
3.3
6.1
6.1

3.
2.2
3.1,3.2
31
4.1
3.13
3.15
3.18
2.1




control
Standard Reply
keep-alive

network
network controj

CMC

call

Computer Port
truak

driver

control
data

Computer
T.MGR

channel map
CMC maintenance
start server
femote

manager

trailer

transport

Standard
data
module
switch
library

network
file

start

driver cail
out-of-band
backplane
driic

CMC message

TIESFEFE -2ncrnoorsansanncsonssscacsonns 2.1
BMESEABR . c0oorenerancancesonsecnns 3.3
TASFSAES cuvoensrrncanasnanancenocorns . 3.5
message bite ofder ...cecvecocnnnen. 3.1
mess2ge Gefnition woce.ooececnconone 3.1
TMESsRLe FOTIIAL .vcerocarconaransa 3.1
message famiBE .voceooncocrsnces 33
IECSSEEE SUMMATIES vecsrnoncaneerans 3.21
768€.000000na- tesoeeasonennassssaseorne 2.2,3.2,3.5
MoBElR ..vuveronrsarconrscssocscarannas 2.4
modile (dI2gram) oceeeveeceerenene 3.7
madule number ........ consascone 32
madme 1 T 3.13
z 2.3

3.13

meimamew ....................... 5.1
network address.......ocecoiennnnnn. 32
network control message format. 3.1
network message definition....... a1
DELWOTK. SBEVET .0ineucnreser 4.1
aode configuration changes....... 3.13
out-of-band signaling............... 5.1
QUEPBE fif0 . ueorrunrronnconeanananes 2.4
PRCKSL veorrooncosenane 2.1
packes ....... becorcensoannasenmnenaanns 21
packet driver...cierienronioonnionn 5.1
Parity eheChifg .oivooosracsccncs 5.1
Port MoGuiB.coouerensorecranssssoonns 2.4
BEMIIVE oucorcrcnsennsonccsomoooessans 3.15
PrAmItIVES oaooreonnocorsroons consrenns 3.18
PTOCEAWICS crcoreroornncnrarrosrcnianes 3.13
DIOCESS1rocoocansosssssnsconsans 3.6
Drocess execution ......... csosmsases 4.2
PIOCESSES covessransronsssosssncsossanse 3.15
PEOLOCOL cevooecncrrncnonncsnsacncnonse 5.1
PrOtOCOL seaeeronasnassonsmoncosse 5.1
remote Process execution.......... 42
Reply Message....cccvvecnmnssonnones 33
FEPIeSEntation .c.ovvereresnrsrsonsene 3.1
FESBL..comonccvonseosa 3.13
FESBL.eansnencrrcrons erenssesscncseseons 3.13
FOULINES «oovseon 6.1
sequence fifo.......ccovrennnnoonss 24
SETVET -ovovccorconrsones 4.1
SEIVET cocunvecronssnsnnsssoonnonssosssos 4.2
SETVET PTOCESS 1econvrnrererasosoruseoe 3.6
SIUP ..evnonncoonnoos cvorasennsoisicers  2.3,2.4
signaling.....c....... . 5.1
slot ..... cesvecarsnsosaroeas 3.2
specimen GriVer .oveveercioionsnncens 24
splice channels.......ececonnes 3.18
Standard Reply Message .......... 3.3
Start SCTVEr ProCesS....ceseces 3.6
SUIRMATICS oo0eeerseensrrannarcasesosas 3.21

8.3




CMC implementation

channel

SWitCh FO88L.....covusenrcscnnnacnaones 3.13
T CMC . ieieiereccsnraoeescennasanes 3.7
TDK ..covicnmrevronrsoonseosonroncans 4.2
teChBIGHE .ovveneurerrssvorsosaonerenes 3.22
T_LSTHR cocverenrnamoecorcossosnnens - 35
T.MGR primitive ...cccoccovecenns 3.16
trailer protocol....cooesonacenronceces 4.1
transImission eITOrS...coccvenceesnsos 5.1
transport protocol....... cororanseena 5.1
T REPLY ovecvorneracncooncncnccnnes 33
trunk module (diagram)...cocovsee 3.7
T_SRV .ccvenreerecrorcnscocsoncrnnses 3.6
T.BRYV ..corieertronnmonoornoccnas 3.6
Unix driver ioctl .....c.cceevceeeenee 2.2
Unix special file.......cccreereneenns 2.1
virtual Cirenit ....cocevovonvonocnenns 3.1,34
ZETO ..oovanconsovassasssensscannrsmsanas 2.4

84

TR B



