DATAKIT - A MODULAR NETWORK FOR

~ SYNCHRONOUS AND ASYNCHRONOUS TRAFFIC

A. G. Fraser

o Bell Laboratories

Murray Hill. New Jersey 07974

ABSTRACT

A set of mutually compatible modules are the elements
of an experimental data network. Called Datakit, the concept
being studied is an "erector set” approach to the construction
of data networks that can grow gracefully and evolve to
accommodate a wide variety of traffic types.

The modules. each a single circuit board. are intercon- 5
nected by a hardware packet switch. The network is master
clocked so that speed control can be used for stream traffic
while asynchronous multiplexing can be used for bursty data.

INTRODUCTION

- The incremental and adaptive nature of data network
growth suggests the use of an "erector set” from which data
networks can be made. A particular network would be con-
structed by selecting from a catalogue of plug-to-plug compa-
tible modules. Initially one could start with a small catalogue
and add to it as the market for new services expands and
technology makes improvements possible.

Datakit is an experimental catalogue of data network
modules. At the time of writing, the modules provide com-
munication between seven comiputers of various sizes and in
the near future we hope to add asynchronous terminals and
telephones to this small network. Support for certain types
of synchronous terminal may follow later.

" Data Representation

The object of a Datakit network is to permit arbitrary
pairs of machines 1o communicate with one another in a sim-
ple and effective manner. The fact that two devices are of
different types or have different natural operating speeds
should not itself be a barrier 10 communication betwgen
them. The first step in meeting this objective is to establish
a network standard for data representation. -

The basic unit of data is a 9-bit envelope (figure 1). One
of the nine bits indicates the type of data contained in the
remaining 8. In one case the 8 bits are user data while the
other case provides for various types of control information.
Control codes exist both for user-to-user communication
(e.g. end of file) and for network internal operations (e.g.
flow control). One control code, called NULL, is a filler that
may be inserted into, or deleted from. the data stream
without altering the meaning of what is transmitted.

In many cases the user’s data is presented to the net-
work as 8-bit bytes with control information encoded
separately. For example, BREAK is signaled by an ASCl1
terminal in the form of a temporary violation of the
<tart/stop byte framing format. In Datakit BREAK is just

I DATA Bk
0 'CONTROL
IBIT © 9BITS .

ENVELOPE STRUCTURE

Figure |

another control code. Synchronous terminals that use the
HDLC protocol transmit a special fag character to delimit
messages and extra bits are stuffed into the data to ensure
that the flag does not occur accidentally. At the interface
with Datakit the flag becomes a SYNC control code and the
extra "stuff” bils are removed from the data.

When there is a difference of protocol between one ler-
minal and another, the Datakit user must route his commun-
ications through a third party: A prolocol conversion
machine. The same may be necessary if the flow or speed
control techniques employed by communicating users differ.
We are currently studying how best to do this translation in
certain special cases. One case is the interface between two
computers that support different data link control procedures.
Another case is the interface between a time-shared com-
puler and its terminals.

Speed and Flow Control

In a synchronous digital network one can avoid conges-
tion on an individual circuit by eslablishing a standard meas-
ure of time. In this way one can arrange that the rate at
which data enters the circuit is exactly equal to that at which
data leaves the circuit. The standard measure of time is gen-
erated by a single (reliable) master clock and is broadcast
throughout the network. From that clock, all other clock
speeds are derived.

20.1.1

.
CH1435-7/79/0000-0098500.75 © 1979 IEEE

'
i
i
H
i

Datakit is a master clocked network so that circuits that
carry bulk or synchronous data can be regulated in a way that
prevents congestion within the network.

Bursty traffic from a set of independent data sources can
be carried efficiently on a shared transmission line by provid-
ing some queue storage space that is used to smooth out the
aggregate data flow. The maximum rate of output from the
queue may be significantly less than the sum of the max-
imum input rates. However, there is a possibility that the
queue may overflow under peak load conditions.

Datakit provides for bursty traffic and it is our aim to
regulate the traffic so that the probability of queue overflow
is held to an acceptably low level. This is an area of current
research. The tools available for performing the regulation
include control of clock speeds at network entry points,
transmission of flow control signals to those machines that
can respond to them, and conditional acceptance of new vir-
tual circuits as part of the call set-up procedure. The sources
of data upon which control decisions are based include a
measure of the volume of traffic being carried on each

transmission line and information provided by the user about

the type of data traffic that he proposes to transmit.

Error Cont:ol o s

The low-level aspect of Datakit (which this paper pri-
marily addresses’ is designed to make data corruption k
improbable, bu' i2ss of transmitted data is more likely. The
intent is to provide a channel with predictable error charac-
teristics. The user, or his interface equipment, is expected to
perform end-to-end error detection and, if necessary,
retransmission.

Detection of error within a network node is done by
including parity with every envelope. Envelopes with bad
parity are discarded and status information {described later)-
is reported to a central point from which maintenance action
can be taken. - .

On transmission lines data is checked by a CRC. If the
CRC fails, all the associated data (48 envelopes) are dis- .
carded. Statistics are kept so that failing transmission lines
can be identified and repaired, or traffic can be rerouted.

Module Interconnection Fuifi .

The secret of success for a modular system is a versatile
set of module inter-connection standards. For Datakit this
translates into the physical, electrical and procedural stan-
dards that allow data generated in one module 1o flow into
another.

Each datakit module is a single circuit board. A
connector on the board plugs into a standard back-plane and
it is through the back-plane that one module communicates
with another (figure 2). If the module connecls 1o some
external equipment, such as a modem or computer, that con-
nection is by means of a second, connector mounted on the
circuit board.

The back-plane connector positions are identical but
each carries a different pre-wired connector address. A max-
imum of 511 modules can be connected together (in several
card cages if necessary). Such an assembly of modules is °
called a Datakit node. e

The modules communicate through virtual circuits as
shown in figure 3. The circuits are administered by a switch

cLocK
DATA
MODULE INTER-CONNECTION
Figure 2
et e
MODULE - —{ MODULE

VIRTUAL CIRCUIT

Figure 3

module which-is described below. For each virtual circuit,
between a source module and a destination module, there s
a source channel number and a destination channel number.
These are not necessarily equal. The channel number is the
module’s means of identifying a particular virtual circuit.
This 9-bit number allows one module to communicate on
512 virtual circuits at one time. The virtual circuits are esta-
blished and cancelled by a procedure that will be described
later.

Within a module, data is handled in packets of 16
envelopes and one 9-bit channel number (figure 4).

CHANNEL
NUMBER 16 ENVELOPES
9BITS 144 BITS

PACKET STRUCTURE

Figure 4

When the packets leave the module they have the source
module address appended. The packet, after passing through
a switch, arrives at the destination module with the destina-
tion module’s address and channel number affixed 10 the 16
envelopes of data.

20.1.2

The Switch

There is one switch (plus an optional hot standby) in
each Datakit node. lts operation is shown schematically in
figure 5. -

PACKET SWITCHING TECHMIQUE

Figure 5

Packets from all modules arrive serially, each packet carrying
the module address of the source and the source channel
number. The switch uses these two numbers to address a
control memory in which is held the module number and
channel number of the destination module. These are.then
substituted in the packet and transmitted over a shared bus
to the destination module. The switch processes data serially
at 7.” Megabits per second. et é

Zirtual circuits are therefore defined by the content of
the control memory. One word in that memory defines a
single circuit joining a source module channel to a destina-
tion module channel. Circuits are blished and ¢ lled
by writing into the control memory. :

The control memory itself behaves like a module. It
can send and receive packets. The packets it receives are
commands to read or write words in the memory and the
packets it transmits are responses (o those commands. .

Typically, virtual circuits are established between the
control memory and one or two control computers (see

figure 6). %
CONTROL.
Y
CONTROL
COMPUTER
.
~
N\
mm===> USERDATA 2 ﬂ
e SWITCH COMMANDS
TERMINAL TERMINAL.

smwa> MODULE STATUS

NETWORK ADMINISTRATION

Figure 6

Only one control computer should be active at one time. It
is the control computer that establishes and cancels virtual
* circuils in response to commands transmitted to it from 3
other modules and, ultimately. from network users.

Administration and Maintenance

A maintenance processor monitors the state of the net-
work. There are two sources of network status information:
the control memory and the modules.

One source of data is the control memory. With each
word of routing information, the control memory contains a
count of the number of packets transmitted on a virtual cir-
cuit. This data can be used for accounting and traffic
management. The control memory also contains information
about parity errors detected in data sent from the various
modules. :

A second source of data is status information transmit-
ted once per second by each module. The status information
is a single packet transmitted on the module’s channel zero.
Part of the status is standard for all modules and that
includes the module’s serial number (assigned individually to
modules when they are manufactured) and some information

- about parity errors and queue overflows. The status infor-

mation is usually routed to a maintenance processor that

-filters it looking for significant changes that must be

transmitted ‘1o the control computer.

Channel zero of a module is used to carry commands
from a mainle 1ance processor to a module. A few com-
mands are standard: reset, disable, and enable. - This allows A
certain degree of control in case of module failures.

All of this control and status information is carried on
standard Datakit channels and all elements of the system
(even the switch) are implemented as modules. Modular
assembly and reconfiguration are therefore particularly easy.

Conclusion

Datakit is an on-going research project. It is of interest
not only because a set of modules may provide a practical
means of building new aetworks but also because attempts at
module design sharpen one's understanding of separate or
separable network functions. : .

The modules so far constructed are a computer inter-
face. an asynchronous terminal interface, a transmission line
interface. a switch and a clock. Modules under development
include a bridge-lap module that permits one to monitor
traffic on selected virtual circuits, an interface for a digital
telephone, and a buffer module. The latter is a set of FIFO
queues that can be switched inlo a transmission path when
necessary to augment the smaller queue that is present on
each module board.

Performance of the system is currently limited by the
computer interface. We have not yet built any DMA inter-
faces. The switch can handlc about 42,000 packets per
second and the fastest transmission line can carry 10,800
packets per second. Of course, neither of these facilities can
be fully loaded if bursty tralfic is to be carried with reason-
able probability of queue overflow.

20.1.3

